\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion

Abstract Related Papers Cited by
  • In this paper, we establish the $p$-th moment exponential stability and quasi sure exponential stability of the solutions to impulsive stochastic differential equations driven by $G$-Brownian motion (IGSDEs in short) by means of $G$-Lyapunov function method. An example is presented to illustrate the efficiency of the obtained results.
    Mathematics Subject Classification: Primary: 34A37, 60H10; Secondary: 34D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    X. Bai and Y. Lin, On the existence and uniqunenss of solutions to the stochastic differential equations driven by $G$-Brownian motion with integral lipschitz codfficients, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 589-610.doi: 10.1007/s10255-014-0405-9.

    [2]

    Z. Chen, Strong laws of large number for capacities, preprint, arXiv:1006.0749.

    [3]

    L. Denis, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion pathes, Potential Anal., 34 (2011), 139-161.doi: 10.1007/s11118-010-9185-x.

    [4]

    W. Fei and C. Fei, Optimal stochastic control and optimal consumption and portfolio with $G$-Brownian motion, preprint, arXiv:1309.0209.

    [5]

    W. Fei and C. Fei, Exponential stability for stochastic differential equations disturbed by $G$-Brownian motion, preprint, arXiv:1311.7311.

    [6]

    F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion, Stochastic Process. Appl., 119 (2009), 3356-3382.doi: 10.1016/j.spa.2009.05.010.

    [7]

    M. Hu and S. Peng, On the representation theorem of $G$-expectations and paths of $G$-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25 (2009) 539-546.doi: 10.1007/s10255-008-8831-1.

    [8]

    L. Hu, Y. Ren and T. Xu, $p$-moment stability of solutions to stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Comput., 230 (2014), 231-237.doi: 10.1016/j.amc.2013.12.111.

    [9]

    V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.doi: 10.1142/0906.

    [10]

    X. Li and S. Peng, Stopping times and related Itô's calcilus with $G$-Brownian motion, Stochastic Process. Appl., 121 (2011), 1492-1508.doi: 10.1016/j.spa.2011.03.009.

    [11]

    Y. Lin, Stochastic differential equations driven by $G$-Brownian motion with reflecting boundary conditions, Electronic. J. Probbab., 18 (2013), 23pp.doi: 10.1214/EJP.v18-2566.

    [12]

    X. Liu, Impulsive stabilization of nonlinear systems, IMA J. Math. Control Inform., 10 (1993), 11-19.doi: 10.1093/imamci/10.1.11.

    [13]

    B. Liu, Stability of solutions for stochastic impulsive systems via comparison approach, IEEE Trans. Automat. Control, 53 (2008), 2128-2133.doi: 10.1109/TAC.2008.930185.

    [14]

    S. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type, in Stochastic Analysis and Applications, Abel Symp., 2, Springer, Berlin, 2007, 541-567.doi: 10.1007/978-3-540-70847-6_25.

    [15]

    S. Peng, $G$-Brownian motion and dynamic risk measures under volatility uncertainty, preprint, arXiv:0711.2834.

    [16]

    S. Peng, Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation, Stochastic Process. Appl., 118 (2008), 2223-2253.doi: 10.1016/j.spa.2007.10.015.

    [17]

    S. Peng, Nonlinear expectations and stochastic calculus under uncertainty, preprint, arXiv:1002.4546.

    [18]

    S. Peng and B. Jia, Some criteria on $p$-th moment stability of impulsive stochastic functional differential equations, Statist. Probab. Lett., 80 (2010), 1085-1092.doi: 10.1016/j.spl.2010.03.002.

    [19]

    Y. Ren, Q. Bi and R. Sakthivel, Stochastic functional differential equations with infinite delay driven by $G$-Brownian motion, Math. Methods Appl. Sci., 36 (2013), 1746-1759.doi: 10.1002/mma.2720.

    [20]

    Y. Ren and L. Hu, A note on the stochastic differential equations driven by $G$-Brownian motion, Statist. Probab. Lett., 81 (2011), 580-585.doi: 10.1016/j.spl.2011.01.010.

    [21]

    L. Shen and J. Sun, $p$-th moment exponential stability of stochastic differential equations with impulsive effect, Sci. China Inf. Sci., 54 (2011), 1702-1711.doi: 10.1007/s11432-011-4250-7.

    [22]

    S. Wu, D. Han and X. Meng, $p$-moment stability of stochastic differential equations with jumps, Appl. Math. Comput., 152 (2004), 505-519.doi: 10.1016/S0096-3003(03)00573-3.

    [23]

    H. Wu and J. Sun, $p$-moment stability of stochastic differential equations with impulsive jump and Markovian switching, Automatica J. IFAC, 42 (2006), 1753-1759.doi: 10.1016/j.automatica.2006.05.009.

    [24]

    X. Wu, L. Yan, W. Zhang and L. Chen, Exponential stability of impulsive stochastic delay differential systems, Discrete Dyn. Nat. Soc., (2012), Art. ID 296136, 15pp.doi: 10.1155/2012/296136.

    [25]

    D. Zhang and Z. Chen, Exponential stability for stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Lett., 25 (2012), 1906-1910.doi: 10.1016/j.aml.2012.02.063.

    [26]

    B. Zhang, J. Xu and D. Kannan, Extension and application of Itô's formula under $G$-framework, Stochastic Anal. Appl., 28 (2010), 322-349.doi: 10.1080/07362990903546595.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(293) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return