- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion
Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses
1. | College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shannxi 710062 |
2. | College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China, China |
3. | College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710119 |
References:
[1] |
Appl. Math. Lett., 16 (2003), 1069-1075.
doi: 10.1016/S0893-9659(03)90096-6. |
[2] |
Nonlinear Anal., 32 (1998), 381-408.
doi: 10.1016/S0362-546X(97)00491-4. |
[3] |
Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 361-430.
doi: 10.1016/S0362-546X(01)00116-X. |
[4] |
Nonlinear Anal. Real World Appl., 10 (2009), 2905-2908.
doi: 10.1016/j.nonrwa.2008.09.009. |
[5] |
Appl. Math. Lett., 22 (2009), 1330-1334.
doi: 10.1016/j.aml.2009.03.005. |
[6] |
Adv. Math. (China), 39 (2010), 679-690.
doi: 1000-0917(2010)06-0679-12. |
[7] |
Trans. Amer. Math. Soc., 284 (1984), 729-743.
doi: 10.1090/S0002-9947-1984-0743741-4. |
[8] |
Nonlinear Anal., 24 (1995), 337-357.
doi: 10.1016/0362-546X(94)E0063-M. |
[9] |
Trans. Amer. Math. Soc., 349 (1997), 2443-2475.
doi: 10.1090/S0002-9947-97-01842-4. |
[10] |
Int. J. Biomath., 2 (2009), 107-118.
doi: 10.1142/S1793524509000522. |
[11] |
Chaos Solitons Fractals, 27 (2006), 1239-1255.
doi: 10.1016/j.chaos.2005.04.097. |
[12] |
Nonlinear Anal. Real World Appl., 12 (2011), 2385-2395.
doi: 10.1016/j.nonrwa.2011.02.011. |
[13] |
J. Math. Biol., 42 (2001), 489-506.
doi: 10.1007/s002850100079. |
[14] |
J. Math. Anal. Appl., 377 (2011), 435-440.
doi: 10.1016/j.jmaa.2010.11.008. |
[15] |
J. Math. Anal. Appl., 359 (2009), 482-498.
doi: 10.1016/j.jmaa.2009.05.039. |
[16] |
J. Math. Anal. Appl., 397 (2013), 9-28.
doi: 10.1016/j.jmaa.2012.07.026. |
[17] |
J. Math. Anal. Appl., 397 (2013), 29-45.
doi: 10.1016/j.jmaa.2012.07.025. |
[18] |
Math. Biosci. Eng., 6 (2009), 585-590.
doi: 10.3934/mbe.2009.6.585. |
[19] |
J. Math. Biol., 36 (1998), 389-406.
doi: 10.1007/s002850050105. |
[20] |
Biometrika, 35 (1948), 213-245.
doi: 10.1093/biomet/35.3-4.213. |
[21] |
Biometrika, 45 (1958), 16-31.
doi: 10.1093/biomet/45.1-2.16. |
[22] |
Biometrika, 47 (1960), 219-234.
doi: 10.1093/biomet/47.3-4.219. |
[23] |
Trans. Amer. Math. Soc., 305 (1988), 143-166.
doi: 10.1090/S0002-9947-1988-0920151-1. |
[24] |
Plenum Press, New York, 1992. |
[25] |
Nonlinear Anal., 26 (1996), 1889-1903.
doi: 10.1016/0362-546X(95)00058-4. |
[26] |
$3^{nd}$ edition, Springer-Verlag, New York-Berlin, 1971.
doi: 10.1007/978-1-4612-1468-7_3. |
[27] |
$2^{nd}$ edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[28] |
Nonlinear Anal. Real World Appl., 9 (2008), 64-79.
doi: 10.1016/j.nonrwa.2006.09.004. |
[29] |
Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 757-768.
doi: 10.1016/j.cnsns.2012.08.020. |
[30] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 1325-1333.
doi: 10.1142/S0218127498001029. |
[31] |
Science Press, Beijing, 1993. Google Scholar |
[32] |
in Handbook of Differential Equations: Stationary Partial Differential Equations, Handb. Differ. Equ., 4, Elsevier/North-Holland, Amsterdam, 2008, 411-501.
doi: 10.1016/S1874-5733(08)80023-X. |
[33] |
J. Math. Anal. Appl., 387 (2012), 931-948.
doi: 10.1016/j.jmaa.2011.09.049. |
show all references
References:
[1] |
Appl. Math. Lett., 16 (2003), 1069-1075.
doi: 10.1016/S0893-9659(03)90096-6. |
[2] |
Nonlinear Anal., 32 (1998), 381-408.
doi: 10.1016/S0362-546X(97)00491-4. |
[3] |
Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 361-430.
doi: 10.1016/S0362-546X(01)00116-X. |
[4] |
Nonlinear Anal. Real World Appl., 10 (2009), 2905-2908.
doi: 10.1016/j.nonrwa.2008.09.009. |
[5] |
Appl. Math. Lett., 22 (2009), 1330-1334.
doi: 10.1016/j.aml.2009.03.005. |
[6] |
Adv. Math. (China), 39 (2010), 679-690.
doi: 1000-0917(2010)06-0679-12. |
[7] |
Trans. Amer. Math. Soc., 284 (1984), 729-743.
doi: 10.1090/S0002-9947-1984-0743741-4. |
[8] |
Nonlinear Anal., 24 (1995), 337-357.
doi: 10.1016/0362-546X(94)E0063-M. |
[9] |
Trans. Amer. Math. Soc., 349 (1997), 2443-2475.
doi: 10.1090/S0002-9947-97-01842-4. |
[10] |
Int. J. Biomath., 2 (2009), 107-118.
doi: 10.1142/S1793524509000522. |
[11] |
Chaos Solitons Fractals, 27 (2006), 1239-1255.
doi: 10.1016/j.chaos.2005.04.097. |
[12] |
Nonlinear Anal. Real World Appl., 12 (2011), 2385-2395.
doi: 10.1016/j.nonrwa.2011.02.011. |
[13] |
J. Math. Biol., 42 (2001), 489-506.
doi: 10.1007/s002850100079. |
[14] |
J. Math. Anal. Appl., 377 (2011), 435-440.
doi: 10.1016/j.jmaa.2010.11.008. |
[15] |
J. Math. Anal. Appl., 359 (2009), 482-498.
doi: 10.1016/j.jmaa.2009.05.039. |
[16] |
J. Math. Anal. Appl., 397 (2013), 9-28.
doi: 10.1016/j.jmaa.2012.07.026. |
[17] |
J. Math. Anal. Appl., 397 (2013), 29-45.
doi: 10.1016/j.jmaa.2012.07.025. |
[18] |
Math. Biosci. Eng., 6 (2009), 585-590.
doi: 10.3934/mbe.2009.6.585. |
[19] |
J. Math. Biol., 36 (1998), 389-406.
doi: 10.1007/s002850050105. |
[20] |
Biometrika, 35 (1948), 213-245.
doi: 10.1093/biomet/35.3-4.213. |
[21] |
Biometrika, 45 (1958), 16-31.
doi: 10.1093/biomet/45.1-2.16. |
[22] |
Biometrika, 47 (1960), 219-234.
doi: 10.1093/biomet/47.3-4.219. |
[23] |
Trans. Amer. Math. Soc., 305 (1988), 143-166.
doi: 10.1090/S0002-9947-1988-0920151-1. |
[24] |
Plenum Press, New York, 1992. |
[25] |
Nonlinear Anal., 26 (1996), 1889-1903.
doi: 10.1016/0362-546X(95)00058-4. |
[26] |
$3^{nd}$ edition, Springer-Verlag, New York-Berlin, 1971.
doi: 10.1007/978-1-4612-1468-7_3. |
[27] |
$2^{nd}$ edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-0873-0. |
[28] |
Nonlinear Anal. Real World Appl., 9 (2008), 64-79.
doi: 10.1016/j.nonrwa.2006.09.004. |
[29] |
Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 757-768.
doi: 10.1016/j.cnsns.2012.08.020. |
[30] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 1325-1333.
doi: 10.1142/S0218127498001029. |
[31] |
Science Press, Beijing, 1993. Google Scholar |
[32] |
in Handbook of Differential Equations: Stationary Partial Differential Equations, Handb. Differ. Equ., 4, Elsevier/North-Holland, Amsterdam, 2008, 411-501.
doi: 10.1016/S1874-5733(08)80023-X. |
[33] |
J. Math. Anal. Appl., 387 (2012), 931-948.
doi: 10.1016/j.jmaa.2011.09.049. |
[1] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[2] |
Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021129 |
[3] |
Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021095 |
[4] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
[5] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[6] |
Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021088 |
[7] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[8] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[9] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[10] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 |
[11] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[12] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[13] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[14] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[15] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[16] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[17] |
Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135 |
[18] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[19] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[20] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]