-
Previous Article
Advances in computational Lyapunov analysis using sum-of-squares programming
- DCDS-B Home
- This Issue
-
Next Article
Review on computational methods for Lyapunov functions
Classical converse theorems in Lyapunov's second method
1. | School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales 2308 |
References:
[1] |
B. D. O. Anderson, Stability of control systems with multiple nonlinearities, Journal of the Franklin Institute, 282 (1966), 155-160.
doi: 10.1016/0016-0032(66)90317-6. |
[2] |
B. D. O. Anderson and J. B. Moore, New results in linear system stability, SIAM Journal on Control, 7 (1969), 398-414.
doi: 10.1137/0307029. |
[3] |
B. D. O. Anderson and J. B. Moore, Detectability and stabilizability of time-varying discrete-time linear systems, SIAM Journal on Control and Optimization, 19 (1981), 20-32.
doi: 10.1137/0319002. |
[4] |
D. Angeli and E. D. Sontag, Forward completeness, unboundedness observability, and their Lyapunov characterizations, Systems & Control Letters, 38 (1999), 209-217.
doi: 10.1016/S0167-6911(99)00055-9. |
[5] |
H. Antosiewicz, A survey of Lyapunov's second method, Contributions to Nonlinear Oscillations, Princeton University Press, 1958, 147-166. |
[6] |
T. M. Apostol, Mathematical Analysis: A Modern Approach to Advanced Calculus, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, USA, 1957. |
[7] |
L. Arnold and B. Schmalfuss, Lyapunov's second method for random dynamical systems, Journal of Differential Equations, 177 (2001), 235-265.
doi: 10.1006/jdeq.2000.3991. |
[8] |
A. Bacciotti and L. Rosier, Liapunov and Lagrange stability: Inverse theorems for discontinuous systems, Mathematics of Control, Signals and Systems, 11 (1998), 101-128.
doi: 10.1007/BF02741887. |
[9] |
E. A. Barbashin, On the theory of general dynamical systems, (Russian) Ucen. Zap. Moskov. Gos. Univ., 135 (1948), 110-133. |
[10] |
E. A. Barbashin, Existence of smooth solutions of some linear equations with partial derivatives, Doklady Akademii Nauk SSSR, 72 (1950), 445-447. |
[11] |
E. A. Barbashin and N. N. Krasovskii, On the stability of motion in the large, (Russian) Doklady Akademii Nauk SSSR, 86 (1952), 453-456. |
[12] |
E. A. Barbashin and N. N. Krasovskii, On the existence of a function of Lyapunov in the case of asymptotic stability in the large, (Russian) Prikladnaya Matematika i Mekhanika, 18 (1954), 345-350. |
[13] |
R. W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory (eds. R. W. Brockett, R. S. Millman and H. J. Sussman), Progr. Math., 27, Birkhäuser Boston, Boston, MA, 1983, 181-191. |
[14] |
C. Cai, A. R. Teel and R. Goebel, Smooth Lyapunov functions for hybrid systems, Part I: Existence is equivalent to robustness, IEEE Transactions on Automatic Control, 52 (2007), 1264-1277.
doi: 10.1109/TAC.2007.900829. |
[15] |
C. Cai, A. R. Teel and R. Goebel, Smooth Lyapunov functions for hybrid systems, Part II: (Pre-)asymptotically stable compact sets, IEEE Transactions on Automatic Control, 53 (2007), 734-748.
doi: 10.1109/TAC.2008.919257. |
[16] |
N. G. Chetayev, The Stability of Motion, Pergamon Press, 1961; Translated from the 2nd Edition in Russian of 1956. |
[17] |
F. H. Clarke, Y. S. Ledyaev, L. Rifford and R. J. Stern, Feedback stabilization and Lyapunov functions, SIAM Journal on Control and Optimization, 39 (2000), 25-48.
doi: 10.1137/S0363012999352297. |
[18] |
F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Transactions on Automatic Control, 42 (1997), 1394-1407.
doi: 10.1109/9.633828. |
[19] |
F. H. Clarke, Y. S. Ledyaev and R. J. Stern, Asymptotic stability and smooth Lyapunov functions, Journal of Differential Equations, 149 (1998), 69-114.
doi: 10.1006/jdeq.1998.3476. |
[20] |
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998. |
[21] |
C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series no. 38, American Mathematical Society, 1978. |
[22] |
T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd edition, Wiley-Interscience, 2006. |
[23] |
K. Deimling, Multivalued Differential Equations, Walter de Gruyter, 1992.
doi: 10.1515/9783110874228. |
[24] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, 1988.
doi: 10.1007/978-94-015-7793-9. |
[25] |
P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions, Discrete and Continuous Dynamical Systems, Series B, 20 (2015). |
[26] |
R. Goebel, R. G. Sanfelice and A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness, Princeton University Press, 2012. |
[27] |
S. P. Gordon, On converses to the stability theorems for difference equations, SIAM Journal on Control, 10 (1972), 76-81.
doi: 10.1137/0310007. |
[28] |
L. Grüne, F. Camilli and F. Wirth, A generalization of Zubov's method to perturbed systems, SIAM Journal on Control and Optimization, 40 (2001), 496-515.
doi: 10.1137/S036301299936316X. |
[29] |
L. Grüne, P. E. Kloeden, S. Siegmund and F. R. Wirth, Lyapunov's second method for nonautonomous differential equations, Discrete and Continuous Dynamical Systems, 18 (2007), 375-403.
doi: 10.3934/dcds.2007.18.375. |
[30] |
L. Grüne and O. S. Serea, Differential games and Zubov's method, SIAM Journal on Control and Optimization, 49 (2011), 2349-2377.
doi: 10.1137/100787829. |
[31] |
W. Hahn, Theory and Application of Liapunov's Direct Method, Prentice-Hall, 1963; Translated from the German Edition of 1959. |
[32] | |
[33] |
B. E. Hitz and B. D. O. Anderson, Discrete positive-real functions and their application to system stability, Proceedings of the Institution of Electrical Engineers, 116 (1969), 153-155.
doi: 10.1049/piee.1969.0031. |
[34] |
F. C. Hoppensteadt, Singular perturbations on the infinite interval, Transactions of the American Mathematical Society, 123 (1966), 521-535.
doi: 10.1090/S0002-9947-1966-0194693-9. |
[35] |
B. P. Ingalls, E. D. Sontag and Y. Wang, Measurement to error stability: A notion of partial detectability for nonlinear systems, in Proceedings of the 41st IEEE Conference on Decision and Control, Vol. 4, Las Vegas, Nevada, USA, 2002, 3946-3951.
doi: 10.1109/CDC.2002.1184983. |
[36] |
Z.-P. Jiang and Y. Wang, A converse Lyapunov theorem for discrete-time systems with disturbances, Systems & Control Letters, 45 (2002), 49-58.
doi: 10.1016/S0167-6911(01)00164-5. |
[37] |
R. E. Kalman, Lyapunov function for the problem of Lur'e in automatic control, Proc. Nat. Acad. Sci. U.S.A., 49 (1963), 201-205.
doi: 10.1073/pnas.49.2.201. |
[38] |
R. E. Kalman and J. E. Bertram, Control system analysis and design via the "second method'' of Lyapunov, Part I, continuous-time systems, Transactions of the AMSE, Series D: Journal of Basic Engineering, 82 (1960), 371-393.
doi: 10.1115/1.3662604. |
[39] |
R. E. Kalman and J. E. Bertram, Control system analysis and design via the "second method'' of Lyapunov, Part II, discrete-time systems, Transactions of the AMSE, Series D: Journal of Basic Engineering, 82 (1960), 394-400.
doi: 10.1115/1.3662605. |
[40] |
I. Karafyllis, Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis, IMA Journal of Mathematical Control and Information, 23 (2006), 11-41.
doi: 10.1093/imamci/dni037. |
[41] |
I. Karafyllis and J. Tsinias, A converse Lyapunov theorem for nonuniform in time global asymptotic stability and its application to feedback stabilization, SIAM Journal on Control and Optimization, 42 (2003), 936-965.
doi: 10.1137/S0363012901392967. |
[42] |
C. M. Kellett, A compendium of comparison function results, Mathematics of Controls, Signals and Systems, 26 (2014), 339-374.
doi: 10.1007/s00498-014-0128-8. |
[43] |
C. M. Kellett and A. R. Teel, A converse Lyapunov theorem for weak uniform asymptotic stability of sets, in Proceedings of Mathematical Theory of Networks and Systems, Perpignan, France, 2000. |
[44] |
C. M. Kellett and A. R. Teel, Uniform asymptotic controllability to a set implies locally Lipschitz control-Lyapunov function, in Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 4, Sydney, Australia, 2000, 3994-3999.
doi: 10.1109/CDC.2000.912339. |
[45] |
C. M. Kellett and A. R. Teel, Discrete-time asymptotic controllability implies smooth control-Lyapunov function, Systems & Control Letters, 52 (2004), 349-359.
doi: 10.1016/j.sysconle.2004.02.011. |
[46] |
C. M. Kellett and A. R. Teel, Weak converse Lyapunov theorems and control Lyapunov functions, SIAM Journal on Control and Optimization, 42 (2004), 1934-1959.
doi: 10.1137/S0363012901398186. |
[47] |
C. M. Kellett and A. R. Teel, On the robustness of $\mathcal{KL}$-stability for difference inclusions: Smooth discrete-time Lyapunov functions, SIAM Journal on Control and Optimization, 44 (2005), 777-800.
doi: 10.1137/S0363012903435862. |
[48] |
C. M. Kellett and A. R. Teel, Sufficient conditions for robustness of $\mathcal{KL}$-stability for difference inclusions, Mathematics of Control, Signals and Systems, 19 (2007), 183-205.
doi: 10.1007/s00498-007-0016-6. |
[49] |
H. K. Khalil, Nonlinear Systems, 2nd edition, Prentice Hall, 1996. |
[50] |
R. Khasminskii, Stochastic Stability of Differential Equations, 2nd edition, Springer, 2012.
doi: 10.1007/978-3-642-23280-0. |
[51] |
P. E. Kloeden, General control systems, in Mathematical Control Theory 1977: Proceedings (ed. W. A. Coppel), Springer-Verlag, Canberra, Australia, 1978, 119-137. |
[52] |
P. E. Kloeden, Lyapunov functions for cocycle attractors in nonautonomous difference equations, Izvetsiya Akad Nauk Rep Moldovia Mathematika, 26 (1998), 32-42. |
[53] |
P. E. Kloeden, A Lyapunov function for pullback attractors of nonautonomous differential equations, Electronic Journal of Differential Equations Conference 05, (2000), 91-102. |
[54] |
P. Kokotović and M. Arcak, Constructive nonlinear control: A historical perspective, Automatica, 37 (2001), 637-662.
doi: 10.1016/S0005-1098(01)00002-4. |
[55] |
N. N. Krasovskii, On the inversion of the theorems of A. M. Lyapunov and N. G. Chetaev concerning instability for stationary systems of differential equations, (Russian) Prikladnaya Matematika i Mekhanika, 18 (1954), 513-532. |
[56] |
N. N. Krasovskii, On the converse of K. P. Persidskii's theorem on uniform stability, (Russian) Prikladnaya Matematika i Mekhanika, 19 (1955), 273-278. |
[57] |
N. N. Krasovskii, Transformation of the theorem of A. M. Lyapunov's second method and questions of first-order stability of motion, (Russian) Prikladnaya Matematika i Mekhanika, 20 (1956), 255-265. |
[58] |
N. N. Krasovskii, Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford University Press, 1963; Translated from the Russian Edition of 1959. |
[59] |
M. Krichman, E. D. Sontag and Y. Wang, Input-output-to-state stability, SIAM Journal on Control and Optimization, 39 (2001), 1874-1928.
doi: 10.1137/S0363012999365352. |
[60] |
M. Krstić, I. Kanellakopoulos and P. Kokotović, Nonlinear and Adaptive Control Design, John Wiley and Sons, Inc., 1995. |
[61] |
J. Kurzweil, Transformation of Lyapunov's first theorem on stability of motion, (Russian) Czechoslovak Mathematical Journal, 5 (1955), 382-398. |
[62] |
J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion, (Russian) Czechoslovak Mathematical Journal, 81 (1956), 217-259, 455-484; English translation in American Mathematical Society Translations (2), 24, 19-77. |
[63] |
J. Kurzweil and I. Vrkoč, Transformation of Lyapunov's theorems on stability and Persidskii's theorems on uniform stability, (Russian) Czechoslovak Mathematical Journal, 7 (1957), 254-272. |
[64] |
H. J. Kushner, Converse theorems for stochastic Liapunov functions, SIAM Journal on Control and Optimization, 5 (1967), 228-233.
doi: 10.1137/0305015. |
[65] |
J. La Salle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, Academic Press, 1961. |
[66] |
V. Lakshmikantham and L. Salvadori, On Massera type converse theorem in terms of two different measures, Bollettino dell'Unione Matematica Italiana, 13 (1976), 293-301. |
[67] |
A. L. Letov, Stability in Nonlinear Control Systems, Princeton University Press, Princeton, New Jersey, 1961; Translated from the Russian Edition of 1955. |
[68] |
Y. Lin, E. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM Journal on Control and Optimization, 34 (1996), 124-160.
doi: 10.1137/S0363012993259981. |
[69] |
A. I. Lur'e, Some Non-Linear Problems in the Theory of Automatic Control, Her Majesty's Stationery Office, 1957; Translated from the Russian Edition of 1951. |
[70] |
A. I. Lur'e and V. N. Postnikov, Stability theory of regulating systems, (Russian) Prikladnaya Matematika i Mekhanika, 8 (1944), 246-248. |
[71] |
A. M. Lyapunov, The general problem of the stability of motion, (Russian) Math. Soc. of Kharkov; English Translation, International Journal of Control, 55 (1992), 531-773.
doi: 10.1080/00207179208934253. |
[72] |
I. G. Malkin, Questions concerning transformation of Lyapunov's theorem on asymptotic stability, (Russian) Prikladnaya Matematika i Mekhanika, 18 (1954), 129-138. |
[73] |
I. G. Malkin, Some Problems in the Theory of Nonlinear Oscillations, United States Atomic Energy Commission, 1959, Translated from the Russian Edition of 1956. |
[74] |
J. L. Massera, On Liapounoff's conditions of stability, Annals of Mathematics, 50 (1949), 705-721.
doi: 10.2307/1969558. |
[75] |
J. L. Massera, Contributions to stability theory, Annals of Mathematics, 64 (1956), 182-206; Erratum: Annals of Mathematics, 68 (1958), 202.
doi: 10.2307/1969955. |
[76] |
A. M. Meilakhs, Design of stable control systems subject to parametric perturbation, Automation and Remote Control, 39 (1979), 1409-1418. |
[77] |
A. N. Michel, L. Hou and D. Liu, Stability of Dynamical Systems: Continuous, Discontinuous, and Discrete Systems, Birkhäuser, 2008. |
[78] |
A. P. Molchanov and E. S. Pyatnitskii, Lyapunov functions that specifiy necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I, Automation and Remote Control, 47 (1986), 344-354. |
[79] |
A. P. Molchanov and E. S. Pyatnitskii, Lyapunov functions that specifiy necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems II, Automation and Remote Control, 47 (1986), 443-451. |
[80] |
A. P. Molchanov and E. S. Pyatnitskii, Lyapunov functions that specifiy necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems III, Automation and Remote Control, 47 (1986), 620-630. |
[81] |
A. P. Molchanov and Y. S. Pyatnitskiy, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory, Systems & Control Letters, 13 (1989), 59-64.
doi: 10.1016/0167-6911(89)90021-2. |
[82] |
A. A. Movchan, Stability of processes with respect to two metrics, Journal of Applied Mathematics and Mechanics, 24 (1960), 1506-1524.
doi: 10.1016/0021-8928(60)90004-6. |
[83] |
M. Patrao, Existence of complete Lyapunov functions for semiflows on separable metric spaces, Far East Journal of Dynamical Systems, 17 (2011), 49-54. |
[84] |
K. P. Persidskii, On a theorem of Liapunov, C. R. (Dokl.) Acad. Sci. URSS, 14 (1937), 541-543. |
[85] |
V. M. Popov, Absolute stability of nonlinear systems of automatic control, Automation and Remote Control, 22 (1961), 857-875. |
[86] |
V. M. Popov, Proprietati de stabilitate si de optimalitate pentru sistemele automate cu mai multe functii de comanda, (Romanian) Studii si Cercetari de Energetica, Academici RPR, 14 (1964), 913-949. |
[87] |
V. M. Popov, Hyperstability of Control Systems, Springer-Verlag, 1973, Translated from the Romanian Edition of 1966. |
[88] |
A. Rantzer, A dual to Lyapunov's stability theorem, Systems & Control Letters, 42 (2001), 161-168.
doi: 10.1016/S0167-6911(00)00087-6. |
[89] |
A. Rantzer, An converse theorem for density functions, in Proceedings of the 41st IEEE Conference on Decision and Control, Vol. 2, Las Vegas, Nevada, USA, 2002, 1890-1891.
doi: 10.1109/CDC.2002.1184801. |
[90] |
L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM Journal on Control and Optimization, 39 (2000), 1043-1064.
doi: 10.1137/S0363012999356039. |
[91] |
L. Rifford, Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM Journal on Control and Optimization, 41 (2002), 659-681.
doi: 10.1137/S0363012900375342. |
[92] |
L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Systems & Control Letters, 19 (1992), 467-473.
doi: 10.1016/0167-6911(92)90078-7. |
[93] |
N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov's Direct Method, Springer-Verlag, 1977. |
[94] |
E. Roxin, On generalized dynamical systems defined by contingent equations, Journal of Differential Equations, 1 (1965), 188-205.
doi: 10.1016/0022-0396(65)90019-7. |
[95] |
E. Roxin, Stability in general control systems, Journal of Differential Equations, 1 (1965), 115-150.
doi: 10.1016/0022-0396(65)90015-X. |
[96] |
E. Roxin, On asymptotic stability in control systems, Rendiconti del Circolo Matematico di Palermo, 15 (1966), 193-208.
doi: 10.1007/BF02849435. |
[97] |
E. Roxin, On stability in control systems, SIAM Journal on Control, 3 (1966), 357-372.
doi: 10.1137/0303024. |
[98] |
C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, 1949. |
[99] |
R. Shorten, F. Wirth, O. Mason, K. Wulff and C. King, Stability criteria for switched and hybrid systems, SIAM Review, 49 (2007), 545-592.
doi: 10.1137/05063516X. |
[100] |
D. D. Šiljak, Nonlinear Systems: The Parameter Analysis and Design, John Wiley & Sons Inc., 1969. |
[101] |
G. V. Smirnov, Weak asymptotic stability of differential inclusions I, Automation and Remote Control, 51 (1990), 901-908. |
[102] |
G. V. Smirnov, Weak asymptotic stability of differential inclusions II, Automation and Remote Control, 51 (1990), 1052-1058. |
[103] |
E. D. Sontag, A Lyapunov-like characterization of asymptotic controllability, SIAM Journal on Control and Optimization, 21 (1983), 462-471.
doi: 10.1137/0321028. |
[104] |
E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[105] |
E. D. Sontag, Clocks and insensitivity to small measurement errors, ESAIM: Control, Optimization, and the Calculus of Variations, 4 (1999), 537-557.
doi: 10.1051/cocv:1999121. |
[106] |
E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Systems & Control Letters, 24 (1995), 351-359.
doi: 10.1016/0167-6911(94)00050-6. |
[107] |
P. Stein, Some general theorems on iterants, Journal of Research of the National Bureau of Standards, 48 (1952), 82-83.
doi: 10.6028/jres.048.010. |
[108] |
A. Subbaraman and A. R. Teel, A converse Lyapunov theorem for strong global recurrence, Automatica, 49 (2013), 2963-2974.
doi: 10.1016/j.automatica.2013.07.001. |
[109] |
A. R. Teel, J. P. Hespanha and A. Subbaraman, A converse Lyapunov theorem and robustness for asymptotic stability in probability, IEEE Transactions on Automatic Control, 59 (2014), 2426-2421.
doi: 10.1109/TAC.2014.2322431. |
[110] |
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{KL}$ estimate involving two positive semidefinite functions, ESAIM: Control, Optimization, and the Calculus of Variations, 5 (2000), 313-367.
doi: 10.1051/cocv:2000113. |
[111] |
Y. Z. Tsypkin, The absolute stability of large-scale nonlinear sampled-data systems, (Russian) Doklady Akademii Nauk SSSR, 145 (1962), 52-55. |
[112] |
Y. Z. Tsypkin, Absolute stability of equilibrium positions and of responses in nonlinear, sampled-data automatic systems, Automation and Remote Control, 24 (1963), 1457-1470. |
[113] |
V. I. Vorotnikov, Partial stability and control: The state-of-the-art and development prospects, Automation and Remote Control, 66 (2005), 511-561.
doi: 10.1007/s10513-005-0099-9. |
[114] |
I. Vrkoč, A general theorem of Chetaev, (Russian) Czechoslovak Mathematical Journal, 5 (1955), 451-461. |
[115] |
J. C. Willems, Dissipative dynamical systems part I: General theory, Archive for Rational Mechanics and Analysis, 45 (1972), 321-351.
doi: 10.1007/BF00276493. |
[116] |
J. C. Willems, Dissipative dynamical systems part II: Linear systems with quadratic supply rates, Archive for Rational Mechanics and Analysis, 45 (1972), 352-393.
doi: 10.1007/BF00276494. |
[117] |
F. W. Wilson, Smoothing derivatives of functions and applications, Transactions of the American Mathematical Society, 139 (1969), 413-428.
doi: 10.1090/S0002-9947-1969-0251747-9. |
[118] |
V. A. Yakubovich, The solution of certain matrix inequalities in automatic control theory, Doklady Akademii Nauk SSSR, 143 (1962), 1304-1307. |
[119] |
T. Yoshizawa, On the stability of solutions of a system of differential equations, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math., 29 (1955), 27-33. |
[120] |
T. Yoshizawa, Stability Theory by Liapunov's Second Method, Mathematical Society of Japan, 1966. |
[121] |
V. I. Zubov, Methods of A. M. Lyapunov and their Application, P. Noordhoff Ltd, Groningen, The Netherlands, 1964; Translated from the Russian Edition of 1957. |
show all references
References:
[1] |
B. D. O. Anderson, Stability of control systems with multiple nonlinearities, Journal of the Franklin Institute, 282 (1966), 155-160.
doi: 10.1016/0016-0032(66)90317-6. |
[2] |
B. D. O. Anderson and J. B. Moore, New results in linear system stability, SIAM Journal on Control, 7 (1969), 398-414.
doi: 10.1137/0307029. |
[3] |
B. D. O. Anderson and J. B. Moore, Detectability and stabilizability of time-varying discrete-time linear systems, SIAM Journal on Control and Optimization, 19 (1981), 20-32.
doi: 10.1137/0319002. |
[4] |
D. Angeli and E. D. Sontag, Forward completeness, unboundedness observability, and their Lyapunov characterizations, Systems & Control Letters, 38 (1999), 209-217.
doi: 10.1016/S0167-6911(99)00055-9. |
[5] |
H. Antosiewicz, A survey of Lyapunov's second method, Contributions to Nonlinear Oscillations, Princeton University Press, 1958, 147-166. |
[6] |
T. M. Apostol, Mathematical Analysis: A Modern Approach to Advanced Calculus, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, USA, 1957. |
[7] |
L. Arnold and B. Schmalfuss, Lyapunov's second method for random dynamical systems, Journal of Differential Equations, 177 (2001), 235-265.
doi: 10.1006/jdeq.2000.3991. |
[8] |
A. Bacciotti and L. Rosier, Liapunov and Lagrange stability: Inverse theorems for discontinuous systems, Mathematics of Control, Signals and Systems, 11 (1998), 101-128.
doi: 10.1007/BF02741887. |
[9] |
E. A. Barbashin, On the theory of general dynamical systems, (Russian) Ucen. Zap. Moskov. Gos. Univ., 135 (1948), 110-133. |
[10] |
E. A. Barbashin, Existence of smooth solutions of some linear equations with partial derivatives, Doklady Akademii Nauk SSSR, 72 (1950), 445-447. |
[11] |
E. A. Barbashin and N. N. Krasovskii, On the stability of motion in the large, (Russian) Doklady Akademii Nauk SSSR, 86 (1952), 453-456. |
[12] |
E. A. Barbashin and N. N. Krasovskii, On the existence of a function of Lyapunov in the case of asymptotic stability in the large, (Russian) Prikladnaya Matematika i Mekhanika, 18 (1954), 345-350. |
[13] |
R. W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory (eds. R. W. Brockett, R. S. Millman and H. J. Sussman), Progr. Math., 27, Birkhäuser Boston, Boston, MA, 1983, 181-191. |
[14] |
C. Cai, A. R. Teel and R. Goebel, Smooth Lyapunov functions for hybrid systems, Part I: Existence is equivalent to robustness, IEEE Transactions on Automatic Control, 52 (2007), 1264-1277.
doi: 10.1109/TAC.2007.900829. |
[15] |
C. Cai, A. R. Teel and R. Goebel, Smooth Lyapunov functions for hybrid systems, Part II: (Pre-)asymptotically stable compact sets, IEEE Transactions on Automatic Control, 53 (2007), 734-748.
doi: 10.1109/TAC.2008.919257. |
[16] |
N. G. Chetayev, The Stability of Motion, Pergamon Press, 1961; Translated from the 2nd Edition in Russian of 1956. |
[17] |
F. H. Clarke, Y. S. Ledyaev, L. Rifford and R. J. Stern, Feedback stabilization and Lyapunov functions, SIAM Journal on Control and Optimization, 39 (2000), 25-48.
doi: 10.1137/S0363012999352297. |
[18] |
F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Transactions on Automatic Control, 42 (1997), 1394-1407.
doi: 10.1109/9.633828. |
[19] |
F. H. Clarke, Y. S. Ledyaev and R. J. Stern, Asymptotic stability and smooth Lyapunov functions, Journal of Differential Equations, 149 (1998), 69-114.
doi: 10.1006/jdeq.1998.3476. |
[20] |
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998. |
[21] |
C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series no. 38, American Mathematical Society, 1978. |
[22] |
T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd edition, Wiley-Interscience, 2006. |
[23] |
K. Deimling, Multivalued Differential Equations, Walter de Gruyter, 1992.
doi: 10.1515/9783110874228. |
[24] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, 1988.
doi: 10.1007/978-94-015-7793-9. |
[25] |
P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions, Discrete and Continuous Dynamical Systems, Series B, 20 (2015). |
[26] |
R. Goebel, R. G. Sanfelice and A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness, Princeton University Press, 2012. |
[27] |
S. P. Gordon, On converses to the stability theorems for difference equations, SIAM Journal on Control, 10 (1972), 76-81.
doi: 10.1137/0310007. |
[28] |
L. Grüne, F. Camilli and F. Wirth, A generalization of Zubov's method to perturbed systems, SIAM Journal on Control and Optimization, 40 (2001), 496-515.
doi: 10.1137/S036301299936316X. |
[29] |
L. Grüne, P. E. Kloeden, S. Siegmund and F. R. Wirth, Lyapunov's second method for nonautonomous differential equations, Discrete and Continuous Dynamical Systems, 18 (2007), 375-403.
doi: 10.3934/dcds.2007.18.375. |
[30] |
L. Grüne and O. S. Serea, Differential games and Zubov's method, SIAM Journal on Control and Optimization, 49 (2011), 2349-2377.
doi: 10.1137/100787829. |
[31] |
W. Hahn, Theory and Application of Liapunov's Direct Method, Prentice-Hall, 1963; Translated from the German Edition of 1959. |
[32] | |
[33] |
B. E. Hitz and B. D. O. Anderson, Discrete positive-real functions and their application to system stability, Proceedings of the Institution of Electrical Engineers, 116 (1969), 153-155.
doi: 10.1049/piee.1969.0031. |
[34] |
F. C. Hoppensteadt, Singular perturbations on the infinite interval, Transactions of the American Mathematical Society, 123 (1966), 521-535.
doi: 10.1090/S0002-9947-1966-0194693-9. |
[35] |
B. P. Ingalls, E. D. Sontag and Y. Wang, Measurement to error stability: A notion of partial detectability for nonlinear systems, in Proceedings of the 41st IEEE Conference on Decision and Control, Vol. 4, Las Vegas, Nevada, USA, 2002, 3946-3951.
doi: 10.1109/CDC.2002.1184983. |
[36] |
Z.-P. Jiang and Y. Wang, A converse Lyapunov theorem for discrete-time systems with disturbances, Systems & Control Letters, 45 (2002), 49-58.
doi: 10.1016/S0167-6911(01)00164-5. |
[37] |
R. E. Kalman, Lyapunov function for the problem of Lur'e in automatic control, Proc. Nat. Acad. Sci. U.S.A., 49 (1963), 201-205.
doi: 10.1073/pnas.49.2.201. |
[38] |
R. E. Kalman and J. E. Bertram, Control system analysis and design via the "second method'' of Lyapunov, Part I, continuous-time systems, Transactions of the AMSE, Series D: Journal of Basic Engineering, 82 (1960), 371-393.
doi: 10.1115/1.3662604. |
[39] |
R. E. Kalman and J. E. Bertram, Control system analysis and design via the "second method'' of Lyapunov, Part II, discrete-time systems, Transactions of the AMSE, Series D: Journal of Basic Engineering, 82 (1960), 394-400.
doi: 10.1115/1.3662605. |
[40] |
I. Karafyllis, Non-uniform robust global asymptotic stability for discrete-time systems and applications to numerical analysis, IMA Journal of Mathematical Control and Information, 23 (2006), 11-41.
doi: 10.1093/imamci/dni037. |
[41] |
I. Karafyllis and J. Tsinias, A converse Lyapunov theorem for nonuniform in time global asymptotic stability and its application to feedback stabilization, SIAM Journal on Control and Optimization, 42 (2003), 936-965.
doi: 10.1137/S0363012901392967. |
[42] |
C. M. Kellett, A compendium of comparison function results, Mathematics of Controls, Signals and Systems, 26 (2014), 339-374.
doi: 10.1007/s00498-014-0128-8. |
[43] |
C. M. Kellett and A. R. Teel, A converse Lyapunov theorem for weak uniform asymptotic stability of sets, in Proceedings of Mathematical Theory of Networks and Systems, Perpignan, France, 2000. |
[44] |
C. M. Kellett and A. R. Teel, Uniform asymptotic controllability to a set implies locally Lipschitz control-Lyapunov function, in Proceedings of the 39th IEEE Conference on Decision and Control, Vol. 4, Sydney, Australia, 2000, 3994-3999.
doi: 10.1109/CDC.2000.912339. |
[45] |
C. M. Kellett and A. R. Teel, Discrete-time asymptotic controllability implies smooth control-Lyapunov function, Systems & Control Letters, 52 (2004), 349-359.
doi: 10.1016/j.sysconle.2004.02.011. |
[46] |
C. M. Kellett and A. R. Teel, Weak converse Lyapunov theorems and control Lyapunov functions, SIAM Journal on Control and Optimization, 42 (2004), 1934-1959.
doi: 10.1137/S0363012901398186. |
[47] |
C. M. Kellett and A. R. Teel, On the robustness of $\mathcal{KL}$-stability for difference inclusions: Smooth discrete-time Lyapunov functions, SIAM Journal on Control and Optimization, 44 (2005), 777-800.
doi: 10.1137/S0363012903435862. |
[48] |
C. M. Kellett and A. R. Teel, Sufficient conditions for robustness of $\mathcal{KL}$-stability for difference inclusions, Mathematics of Control, Signals and Systems, 19 (2007), 183-205.
doi: 10.1007/s00498-007-0016-6. |
[49] |
H. K. Khalil, Nonlinear Systems, 2nd edition, Prentice Hall, 1996. |
[50] |
R. Khasminskii, Stochastic Stability of Differential Equations, 2nd edition, Springer, 2012.
doi: 10.1007/978-3-642-23280-0. |
[51] |
P. E. Kloeden, General control systems, in Mathematical Control Theory 1977: Proceedings (ed. W. A. Coppel), Springer-Verlag, Canberra, Australia, 1978, 119-137. |
[52] |
P. E. Kloeden, Lyapunov functions for cocycle attractors in nonautonomous difference equations, Izvetsiya Akad Nauk Rep Moldovia Mathematika, 26 (1998), 32-42. |
[53] |
P. E. Kloeden, A Lyapunov function for pullback attractors of nonautonomous differential equations, Electronic Journal of Differential Equations Conference 05, (2000), 91-102. |
[54] |
P. Kokotović and M. Arcak, Constructive nonlinear control: A historical perspective, Automatica, 37 (2001), 637-662.
doi: 10.1016/S0005-1098(01)00002-4. |
[55] |
N. N. Krasovskii, On the inversion of the theorems of A. M. Lyapunov and N. G. Chetaev concerning instability for stationary systems of differential equations, (Russian) Prikladnaya Matematika i Mekhanika, 18 (1954), 513-532. |
[56] |
N. N. Krasovskii, On the converse of K. P. Persidskii's theorem on uniform stability, (Russian) Prikladnaya Matematika i Mekhanika, 19 (1955), 273-278. |
[57] |
N. N. Krasovskii, Transformation of the theorem of A. M. Lyapunov's second method and questions of first-order stability of motion, (Russian) Prikladnaya Matematika i Mekhanika, 20 (1956), 255-265. |
[58] |
N. N. Krasovskii, Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford University Press, 1963; Translated from the Russian Edition of 1959. |
[59] |
M. Krichman, E. D. Sontag and Y. Wang, Input-output-to-state stability, SIAM Journal on Control and Optimization, 39 (2001), 1874-1928.
doi: 10.1137/S0363012999365352. |
[60] |
M. Krstić, I. Kanellakopoulos and P. Kokotović, Nonlinear and Adaptive Control Design, John Wiley and Sons, Inc., 1995. |
[61] |
J. Kurzweil, Transformation of Lyapunov's first theorem on stability of motion, (Russian) Czechoslovak Mathematical Journal, 5 (1955), 382-398. |
[62] |
J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion, (Russian) Czechoslovak Mathematical Journal, 81 (1956), 217-259, 455-484; English translation in American Mathematical Society Translations (2), 24, 19-77. |
[63] |
J. Kurzweil and I. Vrkoč, Transformation of Lyapunov's theorems on stability and Persidskii's theorems on uniform stability, (Russian) Czechoslovak Mathematical Journal, 7 (1957), 254-272. |
[64] |
H. J. Kushner, Converse theorems for stochastic Liapunov functions, SIAM Journal on Control and Optimization, 5 (1967), 228-233.
doi: 10.1137/0305015. |
[65] |
J. La Salle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, Academic Press, 1961. |
[66] |
V. Lakshmikantham and L. Salvadori, On Massera type converse theorem in terms of two different measures, Bollettino dell'Unione Matematica Italiana, 13 (1976), 293-301. |
[67] |
A. L. Letov, Stability in Nonlinear Control Systems, Princeton University Press, Princeton, New Jersey, 1961; Translated from the Russian Edition of 1955. |
[68] |
Y. Lin, E. D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM Journal on Control and Optimization, 34 (1996), 124-160.
doi: 10.1137/S0363012993259981. |
[69] |
A. I. Lur'e, Some Non-Linear Problems in the Theory of Automatic Control, Her Majesty's Stationery Office, 1957; Translated from the Russian Edition of 1951. |
[70] |
A. I. Lur'e and V. N. Postnikov, Stability theory of regulating systems, (Russian) Prikladnaya Matematika i Mekhanika, 8 (1944), 246-248. |
[71] |
A. M. Lyapunov, The general problem of the stability of motion, (Russian) Math. Soc. of Kharkov; English Translation, International Journal of Control, 55 (1992), 531-773.
doi: 10.1080/00207179208934253. |
[72] |
I. G. Malkin, Questions concerning transformation of Lyapunov's theorem on asymptotic stability, (Russian) Prikladnaya Matematika i Mekhanika, 18 (1954), 129-138. |
[73] |
I. G. Malkin, Some Problems in the Theory of Nonlinear Oscillations, United States Atomic Energy Commission, 1959, Translated from the Russian Edition of 1956. |
[74] |
J. L. Massera, On Liapounoff's conditions of stability, Annals of Mathematics, 50 (1949), 705-721.
doi: 10.2307/1969558. |
[75] |
J. L. Massera, Contributions to stability theory, Annals of Mathematics, 64 (1956), 182-206; Erratum: Annals of Mathematics, 68 (1958), 202.
doi: 10.2307/1969955. |
[76] |
A. M. Meilakhs, Design of stable control systems subject to parametric perturbation, Automation and Remote Control, 39 (1979), 1409-1418. |
[77] |
A. N. Michel, L. Hou and D. Liu, Stability of Dynamical Systems: Continuous, Discontinuous, and Discrete Systems, Birkhäuser, 2008. |
[78] |
A. P. Molchanov and E. S. Pyatnitskii, Lyapunov functions that specifiy necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I, Automation and Remote Control, 47 (1986), 344-354. |
[79] |
A. P. Molchanov and E. S. Pyatnitskii, Lyapunov functions that specifiy necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems II, Automation and Remote Control, 47 (1986), 443-451. |
[80] |
A. P. Molchanov and E. S. Pyatnitskii, Lyapunov functions that specifiy necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems III, Automation and Remote Control, 47 (1986), 620-630. |
[81] |
A. P. Molchanov and Y. S. Pyatnitskiy, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory, Systems & Control Letters, 13 (1989), 59-64.
doi: 10.1016/0167-6911(89)90021-2. |
[82] |
A. A. Movchan, Stability of processes with respect to two metrics, Journal of Applied Mathematics and Mechanics, 24 (1960), 1506-1524.
doi: 10.1016/0021-8928(60)90004-6. |
[83] |
M. Patrao, Existence of complete Lyapunov functions for semiflows on separable metric spaces, Far East Journal of Dynamical Systems, 17 (2011), 49-54. |
[84] |
K. P. Persidskii, On a theorem of Liapunov, C. R. (Dokl.) Acad. Sci. URSS, 14 (1937), 541-543. |
[85] |
V. M. Popov, Absolute stability of nonlinear systems of automatic control, Automation and Remote Control, 22 (1961), 857-875. |
[86] |
V. M. Popov, Proprietati de stabilitate si de optimalitate pentru sistemele automate cu mai multe functii de comanda, (Romanian) Studii si Cercetari de Energetica, Academici RPR, 14 (1964), 913-949. |
[87] |
V. M. Popov, Hyperstability of Control Systems, Springer-Verlag, 1973, Translated from the Romanian Edition of 1966. |
[88] |
A. Rantzer, A dual to Lyapunov's stability theorem, Systems & Control Letters, 42 (2001), 161-168.
doi: 10.1016/S0167-6911(00)00087-6. |
[89] |
A. Rantzer, An converse theorem for density functions, in Proceedings of the 41st IEEE Conference on Decision and Control, Vol. 2, Las Vegas, Nevada, USA, 2002, 1890-1891.
doi: 10.1109/CDC.2002.1184801. |
[90] |
L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM Journal on Control and Optimization, 39 (2000), 1043-1064.
doi: 10.1137/S0363012999356039. |
[91] |
L. Rifford, Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM Journal on Control and Optimization, 41 (2002), 659-681.
doi: 10.1137/S0363012900375342. |
[92] |
L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Systems & Control Letters, 19 (1992), 467-473.
doi: 10.1016/0167-6911(92)90078-7. |
[93] |
N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov's Direct Method, Springer-Verlag, 1977. |
[94] |
E. Roxin, On generalized dynamical systems defined by contingent equations, Journal of Differential Equations, 1 (1965), 188-205.
doi: 10.1016/0022-0396(65)90019-7. |
[95] |
E. Roxin, Stability in general control systems, Journal of Differential Equations, 1 (1965), 115-150.
doi: 10.1016/0022-0396(65)90015-X. |
[96] |
E. Roxin, On asymptotic stability in control systems, Rendiconti del Circolo Matematico di Palermo, 15 (1966), 193-208.
doi: 10.1007/BF02849435. |
[97] |
E. Roxin, On stability in control systems, SIAM Journal on Control, 3 (1966), 357-372.
doi: 10.1137/0303024. |
[98] |
C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, 1949. |
[99] |
R. Shorten, F. Wirth, O. Mason, K. Wulff and C. King, Stability criteria for switched and hybrid systems, SIAM Review, 49 (2007), 545-592.
doi: 10.1137/05063516X. |
[100] |
D. D. Šiljak, Nonlinear Systems: The Parameter Analysis and Design, John Wiley & Sons Inc., 1969. |
[101] |
G. V. Smirnov, Weak asymptotic stability of differential inclusions I, Automation and Remote Control, 51 (1990), 901-908. |
[102] |
G. V. Smirnov, Weak asymptotic stability of differential inclusions II, Automation and Remote Control, 51 (1990), 1052-1058. |
[103] |
E. D. Sontag, A Lyapunov-like characterization of asymptotic controllability, SIAM Journal on Control and Optimization, 21 (1983), 462-471.
doi: 10.1137/0321028. |
[104] |
E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[105] |
E. D. Sontag, Clocks and insensitivity to small measurement errors, ESAIM: Control, Optimization, and the Calculus of Variations, 4 (1999), 537-557.
doi: 10.1051/cocv:1999121. |
[106] |
E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Systems & Control Letters, 24 (1995), 351-359.
doi: 10.1016/0167-6911(94)00050-6. |
[107] |
P. Stein, Some general theorems on iterants, Journal of Research of the National Bureau of Standards, 48 (1952), 82-83.
doi: 10.6028/jres.048.010. |
[108] |
A. Subbaraman and A. R. Teel, A converse Lyapunov theorem for strong global recurrence, Automatica, 49 (2013), 2963-2974.
doi: 10.1016/j.automatica.2013.07.001. |
[109] |
A. R. Teel, J. P. Hespanha and A. Subbaraman, A converse Lyapunov theorem and robustness for asymptotic stability in probability, IEEE Transactions on Automatic Control, 59 (2014), 2426-2421.
doi: 10.1109/TAC.2014.2322431. |
[110] |
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-$\mathcal{KL}$ estimate involving two positive semidefinite functions, ESAIM: Control, Optimization, and the Calculus of Variations, 5 (2000), 313-367.
doi: 10.1051/cocv:2000113. |
[111] |
Y. Z. Tsypkin, The absolute stability of large-scale nonlinear sampled-data systems, (Russian) Doklady Akademii Nauk SSSR, 145 (1962), 52-55. |
[112] |
Y. Z. Tsypkin, Absolute stability of equilibrium positions and of responses in nonlinear, sampled-data automatic systems, Automation and Remote Control, 24 (1963), 1457-1470. |
[113] |
V. I. Vorotnikov, Partial stability and control: The state-of-the-art and development prospects, Automation and Remote Control, 66 (2005), 511-561.
doi: 10.1007/s10513-005-0099-9. |
[114] |
I. Vrkoč, A general theorem of Chetaev, (Russian) Czechoslovak Mathematical Journal, 5 (1955), 451-461. |
[115] |
J. C. Willems, Dissipative dynamical systems part I: General theory, Archive for Rational Mechanics and Analysis, 45 (1972), 321-351.
doi: 10.1007/BF00276493. |
[116] |
J. C. Willems, Dissipative dynamical systems part II: Linear systems with quadratic supply rates, Archive for Rational Mechanics and Analysis, 45 (1972), 352-393.
doi: 10.1007/BF00276494. |
[117] |
F. W. Wilson, Smoothing derivatives of functions and applications, Transactions of the American Mathematical Society, 139 (1969), 413-428.
doi: 10.1090/S0002-9947-1969-0251747-9. |
[118] |
V. A. Yakubovich, The solution of certain matrix inequalities in automatic control theory, Doklady Akademii Nauk SSSR, 143 (1962), 1304-1307. |
[119] |
T. Yoshizawa, On the stability of solutions of a system of differential equations, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math., 29 (1955), 27-33. |
[120] |
T. Yoshizawa, Stability Theory by Liapunov's Second Method, Mathematical Society of Japan, 1966. |
[121] |
V. I. Zubov, Methods of A. M. Lyapunov and their Application, P. Noordhoff Ltd, Groningen, The Netherlands, 1964; Translated from the Russian Edition of 1957. |
[1] |
Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116 |
[2] |
Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631 |
[3] |
Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33 |
[4] |
Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864 |
[5] |
Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 |
[6] |
Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control and Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231 |
[7] |
Zuowei Cai, Jianhua Huang, Lihong Huang. Generalized Lyapunov-Razumikhin method for retarded differential inclusions: Applications to discontinuous neural networks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3591-3614. doi: 10.3934/dcdsb.2017181 |
[8] |
Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172 |
[9] |
Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 |
[10] |
Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577 |
[11] |
Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618 |
[12] |
Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629 |
[13] |
Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i |
[14] |
Thanh-Anh Nguyen, Dinh-Ke Tran, Nhu-Quan Nguyen. Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3637-3654. doi: 10.3934/dcdsb.2016114 |
[15] |
Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369 |
[16] |
Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192 |
[17] |
Hiroshi Ito. Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5171-5196. doi: 10.3934/dcdsb.2020338 |
[18] |
Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455 |
[19] |
Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258 |
[20] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]