Citation: |
[1] |
A. A. Ahmadi, M. Krstic and P. A. Parrilo, A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function, in Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, IEEE, 2011, 7579-7580.doi: 10.1109/CDC.2011.6161499. |
[2] |
J. Anderson, Dynamical System Decomposition and Analysis Using Convex Optimization, PhD thesis, University of Oxford, Oxford, U.K., 2012. |
[3] |
G. Blekherman, P. A. Parrilo and R. R. Thomas, Semidefinite Optimization and Convex Algebraic Geometry, SIAM, 2013. |
[4] |
J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Springer-Verlag, Berlin, 1998.doi: 10.1007/BFb0084605. |
[5] |
S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.doi: 10.1137/1.9781611970777. |
[6] |
S. Boyd, L. El Ghaoul, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Vol. 15, Society for Industrial Mathematics, 1987. |
[7] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.doi: 10.1017/CBO9780511804441. |
[8] |
G. Chesi, Estimating the domain of attraction for uncertain polynomial systems, Automatica, 40 (2004), 1981-1986.doi: 10.1016/j.automatica.2004.06.014. |
[9] |
G. Chesi, A. Garulli, A. Tesi and A. Vicino, Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems, Springer, 2009.doi: 10.1007/978-1-84882-781-3. |
[10] |
D. Cox, J. Little and D. O'Shea, Ideals, Varietis, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, 1997. |
[11] |
P. A. Giesl and S. F. Hafstein, Revised CPA method to compute Lyapunov functions for nonlinear systems, Journal of Mathematical Analysis and Applications, 410 (2014), 292-306.doi: 10.1016/j.jmaa.2013.08.014. |
[12] |
M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx, 2011. |
[13] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, 1993.doi: 10.1007/978-1-4612-4342-7. |
[14] |
E. J. Hancock and A. Papachristodoulou, Generalised absolute stability and sum of squares, Automatica, 49 (2013), 960-967.doi: 10.1016/j.automatica.2013.01.006. |
[15] |
D. Henrion and J. B. Lasserre, GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi, ACM Transactions on Mathematical Software (TOMS), 29 (2003), 165-194.doi: 10.1145/779359.779363. |
[16] |
Y. Huang and A. Jadbabaie, Nonlinear H control: An enhanced quasi-LPV approach, in Proceedings of the IFAC World Congress, 1999, 85-90. |
[17] |
A. Isidori and A. Astolfi, Disturbance attenuation and $H_{\infty}$-control via measurement feedback in nonlinear systems, IEEE Transactions on Automatic Control, 37 (1992), 1283-1293.doi: 10.1109/9.159566. |
[18] |
H. K. Khalil, Nonlinear Systems, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2000. |
[19] |
V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, 1999.doi: 10.1007/978-94-017-1965-0. |
[20] |
J. Lasserre, D. Henrion, C. Prieur and E. Trelat, Nonlinear optimal control via occupation measures and LMI-relaxations, SIAM Journal on Control and Optimization, 47 (2008), 1643-1666.doi: 10.1137/070685051. |
[21] |
J. Löfberg, Yalmip: A toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. |
[22] |
W. M. Lu and J. C. Doyle, $H_{\infty}$ control of nonlinear systems: A convex characterization, IEEE Transactions on Automatic Control, 40 (1995), 1668-1675.doi: 10.1109/9.412643. |
[23] |
A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler and P. A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, arXiv:1310.4716, 2013. Available from http://www.eng.ox.ac.uk/control/sostools, http://www.cds.caltech.edu/sostools and http://www.mit.edu/~parrilo/sostools. |
[24] |
A. Papachristodoulou, M. M. Peet and S. Lall, Analysis of polynomial systems with time delays via the sum of squares decomposition, IEEE Transactions on Automatic Control, 54 (2009), 1058-1064.doi: 10.1109/TAC.2009.2017168. |
[25] |
A. Papachristodoulou and S. Prajna, Analysis of non-polynomial systems using the sum of squares decomposition, in Positive Polynomials in Control, Springer, 312 (2005), 23-43. |
[26] |
P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, PhD thesis, Caltech, Pasadena, CA, 2000. |
[27] |
P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Mathematical Programming, 96 (2003), 293-320.doi: 10.1007/s10107-003-0387-5. |
[28] |
P. A. Parrilo and B. Sturmfels, Minimizing polynomials functions, arXiv:math/0103170v1, 2001. |
[29] |
M. M. Peet, Exponentially stable nonlinear systems have polynomial Lyapunov functions on bounded regions, Automatic Control, IEEE Transactions on, 54 (2009), 979-987.doi: 10.1109/TAC.2009.2017116. |
[30] |
M. M. Peet and A. Papachristodoulou, A converse sum of squares Lyapunov result with a degree bound, IEEE Transactions on Automatic Control, 57 (2012), 2281-2293.doi: 10.1109/TAC.2012.2190163. |
[31] |
M. M. Peet, A. Papachristodoulou and S. Lall, Positive forms and stability of linear time-delay systems, SIAM J. Control Optim., 47 (2008), 3237-3258.doi: 10.1137/070706999. |
[32] |
S. Prajna, A. Papachristodoulou and F. Wu, Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach, in 5th Asian Control Conference, IEEE, 2004, 157-165. |
[33] |
S. Prajna, P. A. Parrilo and A. Rantzer, Nonlinear control synthesis by convex optimization, IEEE Transactions on Automatic Control, 49 (2004), 310-314.doi: 10.1109/TAC.2003.823000. |
[34] |
J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software, 11/12 (1999), 625-653.doi: 10.1080/10556789908805766. |
[35] |
W. Tan, Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming, PhD thesis, Berkeley, Berkeley, CA, 2006. |
[36] |
B. Tibken and Y. Fan, Computing the domain of attraction for polynomial systems via BMI optimization method, in Proceedings of the American Control Conference, 2006, 117-122.doi: 10.1109/ACC.2006.1655340. |
[37] |
M. J. Todd, Semidefinite optimization, Acta Numerica 2001, 10 (2001), 515-560.doi: 10.1017/S0962492901000071. |
[38] |
K. C. Toh, M. J. Todd and R. H. Tütüncü, SDPT3 - a Matlab software package for semidefinite programming, version 1.3, Optimization Methods and Software, 11 (1999), 545-581.doi: 10.1080/10556789908805762. |
[39] |
U. Topcu, A. Packard, P. Seiler and G. J. Balas, Robust region-of-attraction estimation, IEEE Transactions on Automatic Control, 55 (2010), 137-142.doi: 10.1109/TAC.2009.2033751. |
[40] |
G. Valmorbida and J. Anderson, Region of attraction analysis via invariant sets, in Proc. of the American Control Conference, IEEE, 2014, 3591-3596.doi: 10.1109/ACC.2014.6859263. |
[41] |
L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38 (1996), 49-95.doi: 10.1137/1038003. |
[42] |
Q. Zheng and F. Wu, Nonlinear output feedback $H_{\infty}$ control for polynomial nonlinear systems, in Proceedings of the 2008 American Control Conference, 2008, 1196-1201. |
[43] |
Q. Zheng and F. Wu, Generalized nonlinear $H_{\infty}$ synthesis condition with its numerically efficient solution, International Journal of Robust and Nonlinear Control, 21 (2011), 2079-2100.doi: 10.1002/rnc.1682. |