\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$

Abstract Related Papers Cited by
  • In this article we are concerned with the study of the existence and uniqueness of pathwise mild solutions to evolutions equations driven by a Hölder continuous function with Hölder exponent in $(1/3,1/2)$. Our stochastic integral is a generalization of the well-known Young integral. To be more precise, the integral is defined by using a fractional integration by parts formula and it involves a tensor for which we need to formulate a new equation. From this it turns out that we have to solve a system consisting of a path and an area equations. In this paper we prove the existence of a unique local solution of the system of equations. The results can be applied to stochastic evolution equations with a non-linear diffusion coefficient driven by a fractional Brownian motion with Hurst parameter in $(1/3,1/2]$, which in particular includes white noise.
    Mathematics Subject Classification: Primary: 60H15; Secondary: 60H05, 60G22, 26A33, 26A42.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Caruana and P. Friz, Partial differential equations driven by rough paths, J. Differential Equations, 247 (2009), 140-173.doi: 10.1016/j.jde.2009.01.026.

    [2]

    M. Caruana, P. Friz and H. Oberhauser, A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 27-46.doi: 10.1016/j.anihpc.2010.11.002.

    [3]

    Y. Chen, H. Gao, M. J. Garrido-Atienza and B. Schmalfuß, Pathwise solutions of SPDEs and random dynamical systems, Discrete and Continuous Dynamical Systems, Series A, 34 (2014), 79-98.doi: 10.3934/dcds.2014.34.79.

    [4]

    A. Deya, A. Neuenkirch and S. Tindel, A Milstein-type scheme without Lévy area terms for SDES driven by fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 48 (2012), 518-550.doi: 10.1214/10-AIHP392.

    [5]

    A. Deya, M. Gubinelli and S. Tindel, Non-linear rough heat equations, Probab. Theory Relat. Fields, 153 (2012), 97-147.doi: 10.1007/s00440-011-0341-z.

    [6]

    P. Friz and H. Oberhauser, On the splitting-up method for rough (partial) differential equations, J. Differential Equations, 251 (2011), 316-338.doi: 10.1016/j.jde.2011.02.009.

    [7]

    P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Studies of Advanced Mathematics, Vol. 120, Cambridge University Press, 2010.doi: 10.1017/CBO9780511845079.

    [8]

    M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 473-493.doi: 10.3934/dcdsb.2010.14.473.

    [9]

    M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Compensated fractional derivatives and stochastic evolution equations, Comptes Rendus Mathématique, 350 (2012), 1037-1042.doi: 10.1016/j.crma.2012.11.007.

    [10]

    M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameter $H\in (1/3,1/2]$, arXiv:1502.05070v1.

    [11]

    M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Lévy areas of Ornstein-Uhlenbeck processes in Hilbert spaces, Studies in Systems, Decision and Control, Springer, 30 (2015), 167-188.doi: 10.1007/978-3-319-19075-4_10.

    [12]

    M. J. Garrido-Atienza, B. Maslowski and B. Schmalfuß, Random attractors for stochastic equations driven by a fractional Brownian motion, International Journal of Bifurcation and Chaos, 20 (2010), 2761-2782.doi: 10.1142/S0218127410027349.

    [13]

    M. Gubinelli, A. Lejay and S. Tindel, Young integrals and SPDEs, Potential Anal., 25 (2006), 307-326.doi: 10.1007/s11118-006-9013-5.

    [14]

    M. Gubinelli and S. Tindel, Rough Evolution Equations, The Annals of Probability, 38 (2010), 1-75.doi: 10.1214/08-AOP437.

    [15]

    M. Hinz and M. Zähle, Gradient type noises II-Systems of stochastic partial differential equations, Journal of Functional Analysis, 256 (2009), 3192-3235.doi: 10.1016/j.jfa.2009.02.006.

    [16]

    Y. Hu and D. Nualart, Rough path analysis via fractional calculus, Trans. Amer. Math. Soc., 361 (2009), 2689-2718.doi: 10.1090/S0002-9947-08-04631-X.

    [17]

    R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras: Elementary theory, Graduate Studies in Mathematics, AMS, 1997.

    [18]

    T. Lyons and Z. Qian, System control and rough paths, Oxford Mathematical Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2002.doi: 10.1093/acprof:oso/9780198506485.001.0001.

    [19]

    B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202 (2003), 277-305.doi: 10.1016/S0022-1236(02)00065-4.

    [20]

    D. Nualart and A. Răşcanu, Differential equations driven by fractional Brownian motion, Collect. Math., 53 (2002), 55-81.

    [21]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Applied Mathematical Series, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-1-4612-5561-1.

    [22]

    S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland and Philadelphia, Pa., USA, 1993.

    [23]

    L. C. Young, An integration of Höder type, connected with Stieltjes integration, Acta Math., 67 (1936), 251-282.doi: 10.1007/BF02401743.

    [24]

    M. Zähle, Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Related Fields, 111 (1998), 333-374.doi: 10.1007/s004400050171.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(201) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return