November  2015, 20(9): 2885-2931. doi: 10.3934/dcdsb.2015.20.2885

Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities

1. 

Institute of Mathematics, Academy of Mathematics and Systems Science, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing 100190, China

Received  June 2014 Revised  June 2015 Published  September 2015

In this paper, we establish a priori estimates for three-dimensional compressible Euler equations with the moving physical vacuum boundary, the $\gamma$-gas law equation of state for $\gamma=2$ and the general initial density $\rho_0 \in H^5$. Because of the degeneracy of the initial density, we investigate the estimates of the horizontal spatial and time derivatives and then obtain the estimates of the normal or full derivatives through the elliptic-type estimates. We derive a mixed space-time interpolation inequality which plays a vital role in our energy estimates and obtain some extra estimates for the space-time derivatives of the velocity in $L^3$.
Citation: Chengchun Hao. Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2885-2931. doi: 10.3934/dcdsb.2015.20.2885
References:
[1]

S. Chandrasekhar, The dynamics of stellar systems. I-VIII, Astrophys. J., 90 (1939), 1-154. doi: 10.1086/144094.

[2]

A. Cheng, D. Coutand and S. Shkoller, On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity, Comm. Pure Appl. Math., 61 (2008), 1715-1752. doi: 10.1002/cpa.20240.

[3]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Springer-Verlag, New York, 1976.

[4]

D. Coutand, H. Lindblad and S. Shkoller, A priori estimates for the free-boundary 3D compressible Euler equations in physical vacuum, Comm. Math. Phys., 296 (2010), 559-587. doi: 10.1007/s00220-010-1028-5.

[5]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352. doi: 10.1007/s00205-005-0385-2.

[6]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum, Comm. Pure Appl. Math., 64 (2011), 328-366. doi: 10.1002/cpa.20344.

[7]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Rational Mech. Anal., 206 (2012), 515-616. doi: 10.1007/s00205-012-0536-1.

[8]

J. P. Cox and R. T. Giuli, Principles of Stellar Structure, I, II, New York: Gordon and Breach, 1968.

[9]

J. Jang and N. Masmoudi, Well-posedness for compressible Euler equations with physical vacuum singularity, Comm. Pure Appl. Math., 62 (2009), 1327-1385. doi: 10.1002/cpa.20285.

[10]

J. Jang and N. Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, Comm. Pure Appl. Math., 68 (2015), 61-111. doi: 10.1002/cpa.21517.

[11]

H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., 23 (1970), 277-298. doi: 10.1002/cpa.3160230304.

[12]

A. Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985.

[13]

H. Lindblad, Well posedness for the motion of a compressible liquid with free surface boundary, Comm. Math. Phys., 260 (2005), 319-392. doi: 10.1007/s00220-005-1406-6.

[14]

T. P. Liu, Compressible flow with damping and vacuum, Japan J. Indust. Appl. Math., 13 (1996), 25-32. doi: 10.1007/BF03167296.

[15]

T. P. Liu and T. Yang, Compressible Euler equations with vacuum, J. Differential Equations, 140 (1997), 223-237. doi: 10.1006/jdeq.1997.3281.

[16]

T. P. Liu and T. Yang, Compressible flow with vacuum and physical singularity, Methods Appl. Anal., 7 (2000), 495-509.

[17]

T. Luo, Z. Xin and H. Zeng, Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation, Arch. Ration. Mech. Anal., 213 (2014), 763-831. doi: 10.1007/s00205-014-0742-0.

[18]

T. Makino, On a local existence theorem for the evolution equation of gaseous stars, in Patterns and waves, vol. 18 of Stud. Math. Appl., North-Holland, Amsterdam, (1986), 459-479. doi: 10.1016/S0168-2024(08)70142-5.

[19]

R. Temam, Navier-Stokes Equations, vol. 2 of Studies in Mathematics and its Applications, 3rd edition, North-Holland Publishing Co., Amsterdam, 1984.

[20]

Y. Trakhinin, Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition, Comm. Pure Appl. Math., 62 (2009), 1551-1594. doi: 10.1002/cpa.20282.

[21]

T. Yang, Singular behavior of vacuum states for compressible fluids, J. Comput. Appl. Math., 190 (2006), 211-231. doi: 10.1016/j.cam.2005.01.043.

show all references

References:
[1]

S. Chandrasekhar, The dynamics of stellar systems. I-VIII, Astrophys. J., 90 (1939), 1-154. doi: 10.1086/144094.

[2]

A. Cheng, D. Coutand and S. Shkoller, On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity, Comm. Pure Appl. Math., 61 (2008), 1715-1752. doi: 10.1002/cpa.20240.

[3]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Springer-Verlag, New York, 1976.

[4]

D. Coutand, H. Lindblad and S. Shkoller, A priori estimates for the free-boundary 3D compressible Euler equations in physical vacuum, Comm. Math. Phys., 296 (2010), 559-587. doi: 10.1007/s00220-010-1028-5.

[5]

D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 303-352. doi: 10.1007/s00205-005-0385-2.

[6]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum, Comm. Pure Appl. Math., 64 (2011), 328-366. doi: 10.1002/cpa.20344.

[7]

D. Coutand and S. Shkoller, Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Rational Mech. Anal., 206 (2012), 515-616. doi: 10.1007/s00205-012-0536-1.

[8]

J. P. Cox and R. T. Giuli, Principles of Stellar Structure, I, II, New York: Gordon and Breach, 1968.

[9]

J. Jang and N. Masmoudi, Well-posedness for compressible Euler equations with physical vacuum singularity, Comm. Pure Appl. Math., 62 (2009), 1327-1385. doi: 10.1002/cpa.20285.

[10]

J. Jang and N. Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, Comm. Pure Appl. Math., 68 (2015), 61-111. doi: 10.1002/cpa.21517.

[11]

H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., 23 (1970), 277-298. doi: 10.1002/cpa.3160230304.

[12]

A. Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985.

[13]

H. Lindblad, Well posedness for the motion of a compressible liquid with free surface boundary, Comm. Math. Phys., 260 (2005), 319-392. doi: 10.1007/s00220-005-1406-6.

[14]

T. P. Liu, Compressible flow with damping and vacuum, Japan J. Indust. Appl. Math., 13 (1996), 25-32. doi: 10.1007/BF03167296.

[15]

T. P. Liu and T. Yang, Compressible Euler equations with vacuum, J. Differential Equations, 140 (1997), 223-237. doi: 10.1006/jdeq.1997.3281.

[16]

T. P. Liu and T. Yang, Compressible flow with vacuum and physical singularity, Methods Appl. Anal., 7 (2000), 495-509.

[17]

T. Luo, Z. Xin and H. Zeng, Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation, Arch. Ration. Mech. Anal., 213 (2014), 763-831. doi: 10.1007/s00205-014-0742-0.

[18]

T. Makino, On a local existence theorem for the evolution equation of gaseous stars, in Patterns and waves, vol. 18 of Stud. Math. Appl., North-Holland, Amsterdam, (1986), 459-479. doi: 10.1016/S0168-2024(08)70142-5.

[19]

R. Temam, Navier-Stokes Equations, vol. 2 of Studies in Mathematics and its Applications, 3rd edition, North-Holland Publishing Co., Amsterdam, 1984.

[20]

Y. Trakhinin, Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition, Comm. Pure Appl. Math., 62 (2009), 1551-1594. doi: 10.1002/cpa.20282.

[21]

T. Yang, Singular behavior of vacuum states for compressible fluids, J. Comput. Appl. Math., 190 (2006), 211-231. doi: 10.1016/j.cam.2005.01.043.

[1]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations and Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[2]

Kunquan Li, Yaobin Ou. Global wellposedness of vacuum free boundary problem of isentropic compressible magnetohydrodynamic equations with axisymmetry. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 487-522. doi: 10.3934/dcdsb.2021052

[3]

Yachun Li, Shengguo Zhu. On regular solutions of the $3$D compressible isentropic Euler-Boltzmann equations with vacuum. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3059-3086. doi: 10.3934/dcds.2015.35.3059

[4]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[5]

Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023

[6]

Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107

[7]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[8]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[9]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[10]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[11]

Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations and Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297

[12]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[13]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[14]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[15]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[16]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[17]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[18]

Young-Pil Choi. Compressible Euler equations interacting with incompressible flow. Kinetic and Related Models, 2015, 8 (2) : 335-358. doi: 10.3934/krm.2015.8.335

[19]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[20]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic and Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]