- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Functional solution about stochastic differential equation driven by $G$-Brownian motion
The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise
1. | School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China, China |
References:
[1] |
E. Berettaa, V. Kolmanovskiib and L. Shaikhetc, Stability of epidemic model with time delays influenced by stochastic perturbations, Math Comput Simulat, 45 (1998), 269-277.
doi: 10.1016/S0378-4754(97)00106-7. |
[2] |
J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747-766.
doi: 10.1016/S0362-546X(98)00126-6. |
[3] |
J. Chattopadhyay and N. Bairagi, Pelicans at risk in Salton Sea - an eco-epidemiological study, Ecol. Model., 136 (2001), 103-112. |
[4] |
J. Chattopadhyay, P. D. N. Srinivasu and N. Bairagi, Pelicans at risk in Salton Sea - an eco-epidemiological model II, Ecol. Model., 167 (2003), 199-211.
doi: 10.1016/S0304-3800(03)00187-X. |
[5] |
J. Chattopadhyay, P. K. Roy and N. Bairagi, Role of infection on the stability of a predator-prey system with several response functions - A comparative study, Journal of Theoretical Biology., 248 (2007), 10-25.
doi: 10.1016/j.jtbi.2007.05.005. |
[6] |
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[7] |
H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259-268.
doi: 10.1016/j.tpb.2004.06.010. |
[8] |
K. P. Hadeler and H. I. Freedman, Predator-prey population with parasite infection, J. Math. Biol., 27 (1989), 609-631.
doi: 10.1007/BF00276947. |
[9] |
C. Y. Ji, D. Q. Jiang and N. Z. Shi, Multigroup SIR epidemic model with stochastic perturbation, Physica A, 390 (2011), 1747-1762.
doi: 10.1016/j.automatica.2011.09.044. |
[10] |
C. Y. Ji, D. Q. Jiang, Q. S. Yang and N. Z. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121-131.
doi: 10.1016/j.automatica.2011.09.044. |
[11] |
C. Y. Ji and D. Q. Jiang, Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, Commun Nonlinear Sci Numer Simulat., 17 (2012), 2501-2516.
doi: 10.1016/j.cnsns.2011.07.025. |
[12] |
C. Y. Ji and D. Q. Jiang, Analysis of a predator-prey model with disease in the prey, Int. J. Biomath., 6 (2013), 1350012, 21 pp.
doi: 10.1142/S1793524513500125. |
[13] |
X. Y. Li and X. R. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete and Continuous Dynamical Systems A, 24 (2009), 523-545.
doi: 10.3934/dcds.2009.24.523. |
[14] |
X. R. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997.
doi: 10.1533/9780857099402. |
[15] |
E. Venturino, Epidemics in predator-prey models: Disease in the prey, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Theory of EpidemicsWuerz, 1, Winnipeg, Canada, 1995, 381-393. |
[16] |
E. Venturino, Epidemics in predator-prey models: Disease in the predators, IMA J. Math. Appl. Med. Biol., 19 (2002), 185-205.
doi: 10.1093/imammb19.3.185. |
[17] |
Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.
doi: 10.1016/S0025-5564(01)00049-9. |
show all references
References:
[1] |
E. Berettaa, V. Kolmanovskiib and L. Shaikhetc, Stability of epidemic model with time delays influenced by stochastic perturbations, Math Comput Simulat, 45 (1998), 269-277.
doi: 10.1016/S0378-4754(97)00106-7. |
[2] |
J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 36 (1999), 747-766.
doi: 10.1016/S0362-546X(98)00126-6. |
[3] |
J. Chattopadhyay and N. Bairagi, Pelicans at risk in Salton Sea - an eco-epidemiological study, Ecol. Model., 136 (2001), 103-112. |
[4] |
J. Chattopadhyay, P. D. N. Srinivasu and N. Bairagi, Pelicans at risk in Salton Sea - an eco-epidemiological model II, Ecol. Model., 167 (2003), 199-211.
doi: 10.1016/S0304-3800(03)00187-X. |
[5] |
J. Chattopadhyay, P. K. Roy and N. Bairagi, Role of infection on the stability of a predator-prey system with several response functions - A comparative study, Journal of Theoretical Biology., 248 (2007), 10-25.
doi: 10.1016/j.jtbi.2007.05.005. |
[6] |
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[7] |
H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theor. Popul. Biol., 66 (2004), 259-268.
doi: 10.1016/j.tpb.2004.06.010. |
[8] |
K. P. Hadeler and H. I. Freedman, Predator-prey population with parasite infection, J. Math. Biol., 27 (1989), 609-631.
doi: 10.1007/BF00276947. |
[9] |
C. Y. Ji, D. Q. Jiang and N. Z. Shi, Multigroup SIR epidemic model with stochastic perturbation, Physica A, 390 (2011), 1747-1762.
doi: 10.1016/j.automatica.2011.09.044. |
[10] |
C. Y. Ji, D. Q. Jiang, Q. S. Yang and N. Z. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121-131.
doi: 10.1016/j.automatica.2011.09.044. |
[11] |
C. Y. Ji and D. Q. Jiang, Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, Commun Nonlinear Sci Numer Simulat., 17 (2012), 2501-2516.
doi: 10.1016/j.cnsns.2011.07.025. |
[12] |
C. Y. Ji and D. Q. Jiang, Analysis of a predator-prey model with disease in the prey, Int. J. Biomath., 6 (2013), 1350012, 21 pp.
doi: 10.1142/S1793524513500125. |
[13] |
X. Y. Li and X. R. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete and Continuous Dynamical Systems A, 24 (2009), 523-545.
doi: 10.3934/dcds.2009.24.523. |
[14] |
X. R. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997.
doi: 10.1533/9780857099402. |
[15] |
E. Venturino, Epidemics in predator-prey models: Disease in the prey, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Theory of EpidemicsWuerz, 1, Winnipeg, Canada, 1995, 381-393. |
[16] |
E. Venturino, Epidemics in predator-prey models: Disease in the predators, IMA J. Math. Appl. Med. Biol., 19 (2002), 185-205.
doi: 10.1093/imammb19.3.185. |
[17] |
Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.
doi: 10.1016/S0025-5564(01)00049-9. |
[1] |
Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an eco-epidemiological model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 257-275. doi: 10.3934/dcdsb.2021040 |
[2] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2173-2199. doi: 10.3934/dcdsb.2021027 |
[3] |
Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159 |
[4] |
Jing Li, Zhen Jin, Gui-Quan Sun, Li-Peng Song. Pattern dynamics of a delayed eco-epidemiological model with disease in the predator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1025-1042. doi: 10.3934/dcdss.2017054 |
[5] |
M. W. Hirsch, Hal L. Smith. Asymptotically stable equilibria for monotone semiflows. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 385-398. doi: 10.3934/dcds.2006.14.385 |
[6] |
Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 |
[7] |
Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203 |
[8] |
Jian Zu, Wendi Wang, Bo Zu. Evolutionary dynamics of prey-predator systems with Holling type II functional response. Mathematical Biosciences & Engineering, 2007, 4 (2) : 221-237. doi: 10.3934/mbe.2007.4.221 |
[9] |
Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure and Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481 |
[10] |
Scipio Cuccagna. Orbitally but not asymptotically stable ground states for the discrete NLS. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 105-134. doi: 10.3934/dcds.2010.26.105 |
[11] |
Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure and Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021 |
[12] |
Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597 |
[13] |
François Genoud. Orbitally stable standing waves for the asymptotically linear one-dimensional NLS. Evolution Equations and Control Theory, 2013, 2 (1) : 81-100. doi: 10.3934/eect.2013.2.81 |
[14] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010 |
[15] |
Guohong Zhang, Xiaoli Wang. Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3755-3786. doi: 10.3934/dcdsb.2018076 |
[16] |
Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure and Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032 |
[17] |
Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247 |
[18] |
Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621 |
[19] |
Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857 |
[20] |
Ewa Schmeidel, Karol Gajda, Tomasz Gronek. On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2681-2690. doi: 10.3934/dcdsb.2014.19.2681 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]