Citation: |
[1] |
D. E. Akbarov, V. S. Melnik and V. V. Jasinskiy, Coupled Systems Control Methods, Viriy, Kyiv, 1998 (in Russian). |
[2] |
G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, vol. 146, Springer, New York, 2002.doi: 10.1007/978-1-4684-9286-6. |
[3] |
T. Bagby, Quasi topologies and rational approximation, J. Func. Anal., 10 (1972), 259-268.doi: 10.1016/0022-1236(72)90025-0. |
[4] |
D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Birkhäuser, Boston: in Progress in Nonlinear Differential Equations and their Applications, Vol. 65, 2005. |
[5] |
D. Bucur and P. Trebeschi, Shape optimization problems governed by nonlinear state equations, Proc. Roy. Soc. Edinburgh, Ser. A, 128 (1998), 943-963.doi: 10.1017/S0308210500030006. |
[6] |
D. Bucur and J. P. Zolésio, $N$-Dimensional Shape Optimization under Capacitary Constraints, J. Differential Equations, 123 (1995), 504-522.doi: 10.1006/jdeq.1995.1171. |
[7] |
G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems. Relaxed SIS and optimally conditions, Appl. Math. Optim., 23 (1991), 17-49.doi: 10.1007/BF01442391. |
[8] |
C. Calvo-Jurado and J. Casado-Diaz, Results on existence of solution for an optimal design problem, Extracta Mathematicae, 18 (2003), 263-271. |
[9] |
G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for Dirichlet problem in perforated domains with homogeneous monotone operators, Ann. Scuola Norm. Sup. Pisa Cl.Sci., 24 (1997), 239-290. |
[10] |
G. Dal Maso, F. Ebobisse and M. Ponsiglione, A stability result for nonlinear Neumann problems under boundary variations, J. Math. Pures Appl., 82 (2003), 503-532.doi: 10.1016/S0021-7824(03)00014-X. |
[11] |
E. N. Dancer, The effect of domains shape on the number of positive solutions of certain nonlinear equations, J. Diff. Equations, 87 (1990), 316-339.doi: 10.1016/0022-0396(90)90005-A. |
[12] |
D. Daners, Domain perturbation for linear and nonlinear parabolic equations, J. Diff. Equations, 129 (1996), 358-402.doi: 10.1006/jdeq.1996.0122. |
[13] |
C. D'Apice, U. De Maio and O. P. Kogut, On shape stability of Dirichlet optimal control problems in coefficients for nonlinear elliptic equations, Advances in Differential Equations, 15 (2010), 689-720. |
[14] |
C. D'Apice, U. De Maio and O. P. Kogut, Optimal control problems in coefficients for degenerate equations of monotone type: shape stability and attainability problems, SIAM Journal on Control and Optimization, 50 (2012), 1174-1199.doi: 10.1137/100815761. |
[15] |
C. D'Apice, U. De Maio and P. I. Kogut, Suboptimal boundary control for elliptic equations in critically perforated domains, Ann. Inst. H. Poincaré Anal. Non Line'aire, 25 (2008), 1073-1101.doi: 10.1016/j.anihpc.2007.07.001. |
[16] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992. |
[17] |
K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986. |
[18] |
H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Academie-Varlar, Berlin, 1974. |
[19] |
J. Haslinger and P. Neittaanmäki, Finite Element Approximation of Optimal Shape. Material and Topology Design, John Wiley and Sons, Chichester, 1996. |
[20] |
J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Unabridged republication of the 1993 original. Dover Publications, Inc., Mineola, NY, 2006. |
[21] |
V. I. Ivanenko and V. S. Mel'nik, Varational Metods in Control Problems for Systems with Distributed Parameters, Naukova Dumka, Kiev, 1988 (in Russian). |
[22] |
O. P. Kogut, Qualitative Analysis of one Class of Optimization Problems for Nonlinear Elliptic Operators, PhD thesis at Gluskov Institute of Cyberentics NAS Kiev, 2010. |
[23] |
P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains, Series: Systems and Control, Birkhäuser Verlag, 2011.doi: 10.1007/978-0-8176-8149-4. |
[24] |
O. P. Kupenko, Optimal control problems in coefficients for degenerate variational inequalities of monotone type.I Existence of solutions, Journal of Computational & Applied Mathematics, 106 (2011), 88-104. |
[25] |
I. Lasiecka, NSF-CMBS Lecture Notes: Mathematical Control Theory of Coupled Systems of Partial Differential Equations, SIAM, 2002. |
[26] |
J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer Verlag, New York, 1971. |
[27] |
K. A. Lurie, Applied Optimal Control Theory of Distributed Systems, Plenum Press, NewYork, 1993.doi: 10.1007/978-1-4757-9262-1. |
[28] |
U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math., 3 (1969), 510-585.doi: 10.1016/0001-8708(69)90009-7. |
[29] |
F. Murat, Un contre-exemple pour le probleme du controle dans les coefficients, C. R. Acad. Sci. Paris Ser. A-B, 273 (1971), A708-A711. |
[30] |
F. Murat and L. Tartar, H-convergence. Topics in the mathematical modelling of composite materials, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 31 (1997), 21-43. |
[31] |
O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, Berlin, 1984.doi: 10.1007/978-3-642-87722-3. |
[32] |
U. Ë. Raytum, Optimal Control Problems for Elliptic Equations, Zinatne, Riga, 1989 (in Russian). |
[33] |
J. Sokolowski and J. P. Zolesio, Introduction to Shape Optimization, Springer-Verlag, Berlin, 1992.doi: 10.1007/978-3-642-58106-9. |
[34] |
D. Tiba, Lectures on the Control of Elliptic Systems, in: Lecture Notes, 32, Department of Mathematics, University of Jyväskylä, Finland, 1995. |
[35] |
M. M. Vainberg and I. M. Lavrentieff, Nonlinear equations of hammerstein type with potential and monotone operators in banach spaces, Matematicheskij Sbornik, no. 3, 87 (1972), 324-337 (in Russian). |
[36] |
M. Z. Zgurovski and V. S. Mel'nik, Nonlinear Analysis and Control of Physical Processes and Fields, Springer-Verlag, Berlin, 2004.doi: 10.1007/978-3-642-18770-4. |
[37] |
M. Z. Zgurovski, V. S. Mel'nik and A. N. Novikov, Applied Methods for Analysis and Control of Nonlinear Processes and Fields, Naukova Dumka, Kiev, 2004 (in Russian). |
[38] |
W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, Berlin, 1989.doi: 10.1007/978-1-4612-1015-3. |