-
Previous Article
Directional complexity and entropy for lift mappings
- DCDS-B Home
- This Issue
-
Next Article
Brief survey on the topological entropy
Entropy and actions of sofic groups
1. | Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904 |
References:
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
L. Bowen, A measure-conjugacy invariant for free group actions, Annals of Math., 171 (2010), 1387-1400.
doi: 10.4007/annals.2010.171.1387. |
[3] |
L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc., 23 (2010), 217-245.
doi: 10.1090/S0894-0347-09-00637-7. |
[4] |
L. Bowen, Weak isomorphisms between Bernoulli shifts, Israel J. Math., 183 (2011), 93-102.
doi: 10.1007/s11856-011-0043-3. |
[5] |
M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., 1 (1999), 109-197.
doi: 10.1007/PL00011162. |
[6] |
M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., 2 (1999), 323-415.
doi: 10.1023/A:1009841100168. |
[7] |
M. Keane and M. Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math., 109 (1979), 397-406.
doi: 10.2307/1971117. |
[8] |
D. Kerr, Sofic measure entropy via finite partitions, Groups Geom. Dyn., 7 (2013), 617-632.
doi: 10.4171/GGD/200. |
[9] |
D. Kerr, Bernoulli actions of sofic groups have completely positive entropy, Israel J. Math., 202 (2014), 461-474.
doi: 10.1007/s11856-014-1077-0. |
[10] |
D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Invent. Math., 186 (2011), 501-558.
doi: 10.1007/s00222-011-0324-9. |
[11] |
H. Li, Sofic mean dimension, Adv. Math., 244 (2013), 570-604.
doi: 10.1016/j.aim.2013.05.005. |
[12] |
E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., 89 (1999), 227-262. |
[13] |
E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.
doi: 10.1007/BF02810577. |
[14] |
D. Ornstein, Newton's laws and coin tossing, Notices Amer. Math. Soc., 60 (2013), 450-459.
doi: 10.1090/noti974. |
[15] |
D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141.
doi: 10.1007/BF02790325. |
[16] |
V. A. Rohlin, Generators in ergodic theory, Vest. Leningrad Univ., 18 (1963), 26-32. |
[17] |
V. Rohlin and Y. Sinai, The structure and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR, 141 (1961), 1038-1041. |
[18] |
D. Rudolph and B. Weiss, Entropy and mixing for amenable group actions, Ann. of Math., 151 (2000), 1119-1150.
doi: 10.2307/121130. |
[19] |
A. Stepin, Bernoulli shifts on groups, Dokl. Akad. Nauk SSSR, 223 (1975), 300-302. |
[20] |
J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli, Israel J. Math., 21 (1975), 177-207.
doi: 10.1007/BF02760797. |
[21] |
B. Weiss, Sofic groups and dynamical systems, Sankhya Series A, 62 (2000), 350-359. |
show all references
References:
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.
doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
L. Bowen, A measure-conjugacy invariant for free group actions, Annals of Math., 171 (2010), 1387-1400.
doi: 10.4007/annals.2010.171.1387. |
[3] |
L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc., 23 (2010), 217-245.
doi: 10.1090/S0894-0347-09-00637-7. |
[4] |
L. Bowen, Weak isomorphisms between Bernoulli shifts, Israel J. Math., 183 (2011), 93-102.
doi: 10.1007/s11856-011-0043-3. |
[5] |
M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., 1 (1999), 109-197.
doi: 10.1007/PL00011162. |
[6] |
M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., 2 (1999), 323-415.
doi: 10.1023/A:1009841100168. |
[7] |
M. Keane and M. Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math., 109 (1979), 397-406.
doi: 10.2307/1971117. |
[8] |
D. Kerr, Sofic measure entropy via finite partitions, Groups Geom. Dyn., 7 (2013), 617-632.
doi: 10.4171/GGD/200. |
[9] |
D. Kerr, Bernoulli actions of sofic groups have completely positive entropy, Israel J. Math., 202 (2014), 461-474.
doi: 10.1007/s11856-014-1077-0. |
[10] |
D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Invent. Math., 186 (2011), 501-558.
doi: 10.1007/s00222-011-0324-9. |
[11] |
H. Li, Sofic mean dimension, Adv. Math., 244 (2013), 570-604.
doi: 10.1016/j.aim.2013.05.005. |
[12] |
E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., 89 (1999), 227-262. |
[13] |
E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.
doi: 10.1007/BF02810577. |
[14] |
D. Ornstein, Newton's laws and coin tossing, Notices Amer. Math. Soc., 60 (2013), 450-459.
doi: 10.1090/noti974. |
[15] |
D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141.
doi: 10.1007/BF02790325. |
[16] |
V. A. Rohlin, Generators in ergodic theory, Vest. Leningrad Univ., 18 (1963), 26-32. |
[17] |
V. Rohlin and Y. Sinai, The structure and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR, 141 (1961), 1038-1041. |
[18] |
D. Rudolph and B. Weiss, Entropy and mixing for amenable group actions, Ann. of Math., 151 (2000), 1119-1150.
doi: 10.2307/121130. |
[19] |
A. Stepin, Bernoulli shifts on groups, Dokl. Akad. Nauk SSSR, 223 (1975), 300-302. |
[20] |
J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli, Israel J. Math., 21 (1975), 177-207.
doi: 10.1007/BF02760797. |
[21] |
B. Weiss, Sofic groups and dynamical systems, Sankhya Series A, 62 (2000), 350-359. |
[1] |
Elon Lindenstrauss. Pointwise theorems for amenable groups. Electronic Research Announcements, 1999, 5: 82-90. |
[2] |
John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367 |
[3] |
Brandon Seward. Krieger's finite generator theorem for actions of countable groups Ⅱ. Journal of Modern Dynamics, 2019, 15: 1-39. doi: 10.3934/jmd.2019012 |
[4] |
André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351 |
[5] |
Nir Avni. Spectral and mixing properties of actions of amenable groups. Electronic Research Announcements, 2005, 11: 57-63. |
[6] |
Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779 |
[7] |
Benjamin Hellouin de Menibus, Hugo Maturana Cornejo. Necessary conditions for tiling finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2335-2346. doi: 10.3934/dcds.2020116 |
[8] |
John Banks, Piotr Oprocha, Brett Stanley. Transitive sofic spacing shifts. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4743-4764. doi: 10.3934/dcds.2015.35.4743 |
[9] |
Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347 |
[10] |
Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 |
[11] |
A. Yu. Ol'shanskii and M. V. Sapir. Non-amenable finitely presented torsion-by-cyclic groups. Electronic Research Announcements, 2001, 7: 63-71. |
[12] |
Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022050 |
[13] |
Kengo Matsumoto. Cohomology groups, continuous full groups and continuous orbit equivalence of topological Markov shifts. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 841-862. doi: 10.3934/dcds.2021139 |
[14] |
Richard Miles, Michael Björklund. Entropy range problems and actions of locally normal groups. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 981-989. doi: 10.3934/dcds.2009.25.981 |
[15] |
Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323 |
[16] |
Daniele Mundici. The Haar theorem for lattice-ordered abelian groups with order-unit. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 537-549. doi: 10.3934/dcds.2008.21.537 |
[17] |
Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247 |
[18] |
Kengo Matsumoto. K-groups of the full group actions on one-sided topological Markov shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3753-3765. doi: 10.3934/dcds.2013.33.3753 |
[19] |
Andrea Bonfiglioli, Ermanno Lanconelli. Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1587-1614. doi: 10.3934/cpaa.2012.11.1587 |
[20] |
Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39. |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]