Advanced Search
Article Contents
Article Contents

On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields

Abstract Related Papers Cited by
  • The subject matter of this paper concerns the paraxial approximation for the transport of charged particles. We focus on the magnetic confinement properties of charged particle beams. The collisions between particles are taken into account through the Boltzmann kernel. We derive the magnetic high field limit and we emphasize the main properties of the averaged Boltzmann collision kernel, together with its equilibria.
    Mathematics Subject Classification: Primary: 35Q75, 82D10; Secondary: 78A35.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91-123.


    M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.doi: 10.1016/j.jde.2010.07.010.


    M. Bostan, Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul., 8 (2010), 1923-1957.doi: 10.1137/090777621.


    M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetized plasmas, C. R. Math. Acad. Sci. Paris, 350 (2012), 879-884.doi: 10.1016/j.crma.2012.09.019.


    M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part I: The linear Boltzmann equation, Quart. Appl. Math., 72 (2014), 323-345.doi: 10.1090/S0033-569X-2014-01356-1.


    M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part II: The Fokker-Planck-Landau equation, to appear in Quart. Appl. Math.


    A. J. Brizard, A guiding-center Fokker-Planck collision operator for nonuniform magnetic fields, Phys. Plasmas, 11 (2004), 4429-4438.doi: 10.1063/1.1780532.


    A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Modern Phys., 79 (2007), 421-468.doi: 10.1103/RevModPhys.79.421.


    C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag New-York 1988.doi: 10.1007/978-1-4612-1039-9.


    C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag New-York, 1994.doi: 10.1007/978-1-4419-8524-8.


    R. C. Davidson and H. Qin, Physics of Charged Particle Beams in High Energy Accelerators, Imperial College Press, World Scientific Singapore, 2001.doi: 10.1142/p250.


    P. Degond and P.-A. Raviart, On the paraxial approximation of the stationary Vlasov-Maxwell system, Math. Models Meth. Appl. Sci., 3 (1993), 513-562.doi: 10.1142/S0218202593000278.


    F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, Math. Models Methods Appl. Sci., 16 (2006), 763-791.doi: 10.1142/S0218202506001340.


    E. Frénod, Application of the averaging method to the gyrokinetic plasma, Asymptot. Anal., 46 (2006), 1-28.


    E. Frénod and A. Mouton, Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates, J. Pures Appl. Math. Adv. Appl., 4 (2010), 135-169.


    E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field, Asymptotic Anal., 18 (1998), 193-213.


    E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247.doi: 10.1137/S0036141099364243.


    X. Garbet, G. Dif-Pradalier, C. Nguyen, Y. Sarazin, V. Grandgirard and Ph. Ghendrih, Neoclassical equilibrium in gyrokinetic simulations, Phys, Plasmas, 16 (2009), 062503.doi: 10.1063/1.3153328.


    F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl., 78 (1999), 791-817.doi: 10.1016/S0021-7824(99)00021-5.


    G. Laval, S. Mas-Gallic and P.-A. Raviart, Paraxial approximation of ultra-relativistic intense beams, Numer. Math., 69 (1994), 33-60.doi: 10.1007/s002110050079.


    D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065.doi: 10.1007/BF02179552.


    J. Madsen, Gyrokinetic linearized Landau collision operator, Phys. Review, 87 (2013), 011101.doi: 10.1103/PhysRevE.87.011101.


    P.-A. Raviart, Paraxial approximation of the stationary Vlasov-Maxwell equations, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. XIII, Paris, (1991-1993), Pitman Res. Notes Math. Ser., 302, Longman Sci. Tech., Harlow, 1994, 158-171.


    H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. Verw. Gebiele, 46 (1978/79), 67-105. doi: 10.1007/BF00535689.


    G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J. Statist. Phys., 94 (1999), 619-637.doi: 10.1023/A:1004589506756.


    G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys., 203 (1999), 667-706.doi: 10.1007/s002200050631.


    C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307.doi: 10.1007/s002050050106.


    C. Villani, Contribution à l'étude mathématique des collisions en théorie cinétique, Master's thesis, Université Paris-Dauphine France, 2000.


    X. Q. Xu and M. N. Rosenbluth, Numerical simulation of ion-temperature-gradient-driven modes, Phys. Fluids B, 3 (1991), 627-643.doi: 10.1063/1.859862.

  • 加载中

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint