March  2015, 20(2): 339-371. doi: 10.3934/dcdsb.2015.20.339

On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields

1. 

Institut de Mathématiques de Marseille UMR 7353, Aix Marseille Université, CNRS, Centrale Marseille, 13453 Marseille, France

Received  September 2013 Revised  September 2014 Published  January 2015

The subject matter of this paper concerns the paraxial approximation for the transport of charged particles. We focus on the magnetic confinement properties of charged particle beams. The collisions between particles are taken into account through the Boltzmann kernel. We derive the magnetic high field limit and we emphasize the main properties of the averaged Boltzmann collision kernel, together with its equilibria.
Citation: Mihai Bostan. On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 339-371. doi: 10.3934/dcdsb.2015.20.339
References:
[1]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91-123.

[2]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663. doi: 10.1016/j.jde.2010.07.010.

[3]

M. Bostan, Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul., 8 (2010), 1923-1957. doi: 10.1137/090777621.

[4]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetized plasmas, C. R. Math. Acad. Sci. Paris, 350 (2012), 879-884. doi: 10.1016/j.crma.2012.09.019.

[5]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part I: The linear Boltzmann equation, Quart. Appl. Math., 72 (2014), 323-345. doi: 10.1090/S0033-569X-2014-01356-1.

[6]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part II: The Fokker-Planck-Landau equation,, to appear in Quart. Appl. Math., (). 

[7]

A. J. Brizard, A guiding-center Fokker-Planck collision operator for nonuniform magnetic fields, Phys. Plasmas, 11 (2004), 4429-4438. doi: 10.1063/1.1780532.

[8]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Modern Phys., 79 (2007), 421-468. doi: 10.1103/RevModPhys.79.421.

[9]

C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag New-York 1988. doi: 10.1007/978-1-4612-1039-9.

[10]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag New-York, 1994. doi: 10.1007/978-1-4419-8524-8.

[11]

R. C. Davidson and H. Qin, Physics of Charged Particle Beams in High Energy Accelerators, Imperial College Press, World Scientific Singapore, 2001. doi: 10.1142/p250.

[12]

P. Degond and P.-A. Raviart, On the paraxial approximation of the stationary Vlasov-Maxwell system, Math. Models Meth. Appl. Sci., 3 (1993), 513-562. doi: 10.1142/S0218202593000278.

[13]

F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, Math. Models Methods Appl. Sci., 16 (2006), 763-791. doi: 10.1142/S0218202506001340.

[14]

E. Frénod, Application of the averaging method to the gyrokinetic plasma, Asymptot. Anal., 46 (2006), 1-28.

[15]

E. Frénod and A. Mouton, Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates, J. Pures Appl. Math. Adv. Appl., 4 (2010), 135-169.

[16]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field, Asymptotic Anal., 18 (1998), 193-213.

[17]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247. doi: 10.1137/S0036141099364243.

[18]

X. Garbet, G. Dif-Pradalier, C. Nguyen, Y. Sarazin, V. Grandgirard and Ph. Ghendrih, Neoclassical equilibrium in gyrokinetic simulations, Phys, Plasmas, 16 (2009), 062503. doi: 10.1063/1.3153328.

[19]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl., 78 (1999), 791-817. doi: 10.1016/S0021-7824(99)00021-5.

[20]

G. Laval, S. Mas-Gallic and P.-A. Raviart, Paraxial approximation of ultra-relativistic intense beams, Numer. Math., 69 (1994), 33-60. doi: 10.1007/s002110050079.

[21]

D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065. doi: 10.1007/BF02179552.

[22]

J. Madsen, Gyrokinetic linearized Landau collision operator, Phys. Review, 87 (2013), 011101. doi: 10.1103/PhysRevE.87.011101.

[23]

P.-A. Raviart, Paraxial approximation of the stationary Vlasov-Maxwell equations, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. XIII, Paris, (1991-1993), Pitman Res. Notes Math. Ser., 302, Longman Sci. Tech., Harlow, 1994, 158-171.

[24]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,, Z. Wahrsch. Verw. Gebiele, 46 (): 67.  doi: 10.1007/BF00535689.

[25]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J. Statist. Phys., 94 (1999), 619-637. doi: 10.1023/A:1004589506756.

[26]

G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys., 203 (1999), 667-706. doi: 10.1007/s002200050631.

[27]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

[28]

C. Villani, Contribution à l'étude mathématique des collisions en théorie cinétique, Master's thesis, Université Paris-Dauphine France, 2000.

[29]

X. Q. Xu and M. N. Rosenbluth, Numerical simulation of ion-temperature-gradient-driven modes, Phys. Fluids B, 3 (1991), 627-643. doi: 10.1063/1.859862.

show all references

References:
[1]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91-123.

[2]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663. doi: 10.1016/j.jde.2010.07.010.

[3]

M. Bostan, Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul., 8 (2010), 1923-1957. doi: 10.1137/090777621.

[4]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetized plasmas, C. R. Math. Acad. Sci. Paris, 350 (2012), 879-884. doi: 10.1016/j.crma.2012.09.019.

[5]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part I: The linear Boltzmann equation, Quart. Appl. Math., 72 (2014), 323-345. doi: 10.1090/S0033-569X-2014-01356-1.

[6]

M. Bostan and C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part II: The Fokker-Planck-Landau equation,, to appear in Quart. Appl. Math., (). 

[7]

A. J. Brizard, A guiding-center Fokker-Planck collision operator for nonuniform magnetic fields, Phys. Plasmas, 11 (2004), 4429-4438. doi: 10.1063/1.1780532.

[8]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Modern Phys., 79 (2007), 421-468. doi: 10.1103/RevModPhys.79.421.

[9]

C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag New-York 1988. doi: 10.1007/978-1-4612-1039-9.

[10]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag New-York, 1994. doi: 10.1007/978-1-4419-8524-8.

[11]

R. C. Davidson and H. Qin, Physics of Charged Particle Beams in High Energy Accelerators, Imperial College Press, World Scientific Singapore, 2001. doi: 10.1142/p250.

[12]

P. Degond and P.-A. Raviart, On the paraxial approximation of the stationary Vlasov-Maxwell system, Math. Models Meth. Appl. Sci., 3 (1993), 513-562. doi: 10.1142/S0218202593000278.

[13]

F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, Math. Models Methods Appl. Sci., 16 (2006), 763-791. doi: 10.1142/S0218202506001340.

[14]

E. Frénod, Application of the averaging method to the gyrokinetic plasma, Asymptot. Anal., 46 (2006), 1-28.

[15]

E. Frénod and A. Mouton, Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates, J. Pures Appl. Math. Adv. Appl., 4 (2010), 135-169.

[16]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field, Asymptotic Anal., 18 (1998), 193-213.

[17]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247. doi: 10.1137/S0036141099364243.

[18]

X. Garbet, G. Dif-Pradalier, C. Nguyen, Y. Sarazin, V. Grandgirard and Ph. Ghendrih, Neoclassical equilibrium in gyrokinetic simulations, Phys, Plasmas, 16 (2009), 062503. doi: 10.1063/1.3153328.

[19]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl., 78 (1999), 791-817. doi: 10.1016/S0021-7824(99)00021-5.

[20]

G. Laval, S. Mas-Gallic and P.-A. Raviart, Paraxial approximation of ultra-relativistic intense beams, Numer. Math., 69 (1994), 33-60. doi: 10.1007/s002110050079.

[21]

D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065. doi: 10.1007/BF02179552.

[22]

J. Madsen, Gyrokinetic linearized Landau collision operator, Phys. Review, 87 (2013), 011101. doi: 10.1103/PhysRevE.87.011101.

[23]

P.-A. Raviart, Paraxial approximation of the stationary Vlasov-Maxwell equations, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. XIII, Paris, (1991-1993), Pitman Res. Notes Math. Ser., 302, Longman Sci. Tech., Harlow, 1994, 158-171.

[24]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,, Z. Wahrsch. Verw. Gebiele, 46 (): 67.  doi: 10.1007/BF00535689.

[25]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J. Statist. Phys., 94 (1999), 619-637. doi: 10.1023/A:1004589506756.

[26]

G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys., 203 (1999), 667-706. doi: 10.1007/s002200050631.

[27]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

[28]

C. Villani, Contribution à l'étude mathématique des collisions en théorie cinétique, Master's thesis, Université Paris-Dauphine France, 2000.

[29]

X. Q. Xu and M. N. Rosenbluth, Numerical simulation of ion-temperature-gradient-driven modes, Phys. Fluids B, 3 (1991), 627-643. doi: 10.1063/1.859862.

[1]

Rafael Sanabria. Inelastic Boltzmann equation driven by a particle thermal bath. Kinetic and Related Models, 2021, 14 (4) : 639-679. doi: 10.3934/krm.2021018

[2]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic and Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[3]

Martin Frank, Thierry Goudon. On a generalized Boltzmann equation for non-classical particle transport. Kinetic and Related Models, 2010, 3 (3) : 395-407. doi: 10.3934/krm.2010.3.395

[4]

T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125

[5]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[6]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[7]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic and Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[8]

Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007

[9]

Valerii Los, Vladimir A. Mikhailets, Aleksandr A. Murach. An isomorphism theorem for parabolic problems in Hörmander spaces and its applications. Communications on Pure and Applied Analysis, 2017, 16 (1) : 69-98. doi: 10.3934/cpaa.2017003

[10]

Gilberto M. Kremer, Filipe Oliveira, Ana Jacinta Soares. $\mathcal H$-Theorem and trend to equilibrium of chemically reacting mixtures of gases. Kinetic and Related Models, 2009, 2 (2) : 333-343. doi: 10.3934/krm.2009.2.333

[11]

Daniel Peterseim. Robustness of finite element simulations in densely packed random particle composites. Networks and Heterogeneous Media, 2012, 7 (1) : 113-126. doi: 10.3934/nhm.2012.7.113

[12]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic and Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[13]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic and Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[14]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic and Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[15]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic and Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[16]

Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic and Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237

[17]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic and Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[18]

Thierry Goudon, Martin Parisot. Non--local macroscopic models based on Gaussian closures for the Spizer-Härm regime. Kinetic and Related Models, 2011, 4 (3) : 735-766. doi: 10.3934/krm.2011.4.735

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317

[20]

Baojun Bian, Nan Wu, Harry Zheng. Optimal liquidation in a finite time regime switching model with permanent and temporary pricing impact. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1401-1420. doi: 10.3934/dcdsb.2016002

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]