-
Previous Article
Topological entropy for set-valued maps
- DCDS-B Home
- This Issue
-
Next Article
Formulas for the topological entropy of multimodal maps based on min-max symbols
Realizing subexponential entropy growth rates by cutting and stacking
1. | Department of Mathematics, John Brown University, 2000 W. University St, Siloam Springs, AR 72761, United States |
References:
[1] |
F. Blume, An entropy estimate for infinite interval exchange transformations,, Mathematische Zeitschrift, 272 (2012), 17.
doi: 10.1007/s00209-011-0919-2. |
[2] |
F. Blume, Minimal rates of entropy convergence for completely ergodic systems,, Israel Journal of Mathematics, 108 (1998), 1.
doi: 10.1007/BF02783038. |
[3] |
F. Blume, Minimal rates of entropy convergence for rank one systems,, Discrete and Continuous Dynamical Systems, 6 (2000), 773.
doi: 10.3934/dcds.2000.6.773. |
[4] |
F. Blume, On the relation between entropy and the average complexity of trajectories in dynamical systems,, Computational Complexity, 9 (2000), 146.
doi: 10.1007/PL00001604. |
[5] |
F. Blume, On the relation between entropy convergence rates and Baire category,, Mathematische Zeitschrift, 271 (2012), 723.
doi: 10.1007/s00209-011-0887-6. |
[6] |
F. Blume, Possible rates of entropy convergence,, Ergodic Theory and Dynamical Systems, 17 (1997), 45.
doi: 10.1017/S0143385797069733. |
[7] |
F. Blume, The Rate of Entropy Convergence,, Doctoral Dissertation, (1995).
|
[8] |
A. Katok and J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations,, Annales de l'Institut Henri Poincare (B) Probability and Statistics, 33 (1997), 323.
doi: 10.1016/S0246-0203(97)80094-5. |
[9] |
W. Parry, Entropy and Generators in Ergodic Theory,, Benjamin, (1969).
|
[10] |
K. E. Petersen, Ergodic Theory,, Cambridge University Press, (1983).
doi: 10.1017/CBO9780511608728. |
show all references
References:
[1] |
F. Blume, An entropy estimate for infinite interval exchange transformations,, Mathematische Zeitschrift, 272 (2012), 17.
doi: 10.1007/s00209-011-0919-2. |
[2] |
F. Blume, Minimal rates of entropy convergence for completely ergodic systems,, Israel Journal of Mathematics, 108 (1998), 1.
doi: 10.1007/BF02783038. |
[3] |
F. Blume, Minimal rates of entropy convergence for rank one systems,, Discrete and Continuous Dynamical Systems, 6 (2000), 773.
doi: 10.3934/dcds.2000.6.773. |
[4] |
F. Blume, On the relation between entropy and the average complexity of trajectories in dynamical systems,, Computational Complexity, 9 (2000), 146.
doi: 10.1007/PL00001604. |
[5] |
F. Blume, On the relation between entropy convergence rates and Baire category,, Mathematische Zeitschrift, 271 (2012), 723.
doi: 10.1007/s00209-011-0887-6. |
[6] |
F. Blume, Possible rates of entropy convergence,, Ergodic Theory and Dynamical Systems, 17 (1997), 45.
doi: 10.1017/S0143385797069733. |
[7] |
F. Blume, The Rate of Entropy Convergence,, Doctoral Dissertation, (1995).
|
[8] |
A. Katok and J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations,, Annales de l'Institut Henri Poincare (B) Probability and Statistics, 33 (1997), 323.
doi: 10.1016/S0246-0203(97)80094-5. |
[9] |
W. Parry, Entropy and Generators in Ergodic Theory,, Benjamin, (1969).
|
[10] |
K. E. Petersen, Ergodic Theory,, Cambridge University Press, (1983).
doi: 10.1017/CBO9780511608728. |
[1] |
Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339 |
[2] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[3] |
Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773 |
[4] |
Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237 |
[5] |
Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018 |
[6] |
John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16. |
[7] |
Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127 |
[8] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[9] |
Karsten Keller, Sergiy Maksymenko, Inga Stolz. Entropy determination based on the ordinal structure of a dynamical system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3507-3524. doi: 10.3934/dcdsb.2015.20.3507 |
[10] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[11] |
Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021 |
[12] |
Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191 |
[13] |
Wen Huang, Leiye Xu, Shengnan Xu. Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, , () : -. doi: 10.3934/era.2021015 |
[14] |
Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic & Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533 |
[15] |
Gabriele Link, Jean-Claude Picaud. Ergodic geometry for non-elementary rank one manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6257-6284. doi: 10.3934/dcds.2016072 |
[16] |
Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 |
[17] |
Manfred Einsiedler, Elon Lindenstrauss. Symmetry of entropy in higher rank diagonalizable actions and measure classification. Journal of Modern Dynamics, 2018, 13: 163-185. doi: 10.3934/jmd.2018016 |
[18] |
Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427 |
[19] |
Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75 |
[20] |
César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]