December  2015, 20(10): 3435-3459. doi: 10.3934/dcdsb.2015.20.3435

Realizing subexponential entropy growth rates by cutting and stacking

1. 

Department of Mathematics, John Brown University, 2000 W. University St, Siloam Springs, AR 72761, United States

Received  October 2014 Revised  March 2015 Published  September 2015

We show that for any concave positive function $f$ defined on $[0,\infty)$ with $\lim_{x\rightarrow\infty}f(x)/x=0$ there exists a rank one system $(X_f,T_f)$ such that $\limsup_{n\rightarrow\infty} H(\alpha_0^{n-1})/f(n)\ge 1$ for all nontrivial partitions $\alpha$ of $X_f$ into two sets and that there is one partition $\alpha$ of $X_f$ into two sets for which the limit superior of $H(\alpha_0^{n-1})/f(n)$ is equal to one whenever the condition $\lim_{x\rightarrow\infty}\ln x/f(x)=0$ is satisfied. Furthermore, for each system $(X_f,T_f)$ we also identify the minimal entropy growth rate in the limit inferior.
Citation: Frank Blume. Realizing subexponential entropy growth rates by cutting and stacking. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3435-3459. doi: 10.3934/dcdsb.2015.20.3435
References:
[1]

F. Blume, An entropy estimate for infinite interval exchange transformations, Mathematische Zeitschrift, 272 (2012), 17-29. doi: 10.1007/s00209-011-0919-2.

[2]

F. Blume, Minimal rates of entropy convergence for completely ergodic systems, Israel Journal of Mathematics, 108 (1998), 1-12. doi: 10.1007/BF02783038.

[3]

F. Blume, Minimal rates of entropy convergence for rank one systems, Discrete and Continuous Dynamical Systems, 6 (2000), 773-796. doi: 10.3934/dcds.2000.6.773.

[4]

F. Blume, On the relation between entropy and the average complexity of trajectories in dynamical systems, Computational Complexity, 9 (2000), 146-155. doi: 10.1007/PL00001604.

[5]

F. Blume, On the relation between entropy convergence rates and Baire category, Mathematische Zeitschrift, 271 (2012), 723-750. doi: 10.1007/s00209-011-0887-6.

[6]

F. Blume, Possible rates of entropy convergence, Ergodic Theory and Dynamical Systems, 17 (1997), 45-70. doi: 10.1017/S0143385797069733.

[7]

F. Blume, The Rate of Entropy Convergence, Doctoral Dissertation, University of North Carolina at Chapel Hill, 1995.

[8]

A. Katok and J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, 33 (1997), 323-338. doi: 10.1016/S0246-0203(97)80094-5.

[9]

W. Parry, Entropy and Generators in Ergodic Theory, Benjamin, New York, 1969.

[10]

K. E. Petersen, Ergodic Theory, Cambridge University Press, New York, 1983. doi: 10.1017/CBO9780511608728.

show all references

References:
[1]

F. Blume, An entropy estimate for infinite interval exchange transformations, Mathematische Zeitschrift, 272 (2012), 17-29. doi: 10.1007/s00209-011-0919-2.

[2]

F. Blume, Minimal rates of entropy convergence for completely ergodic systems, Israel Journal of Mathematics, 108 (1998), 1-12. doi: 10.1007/BF02783038.

[3]

F. Blume, Minimal rates of entropy convergence for rank one systems, Discrete and Continuous Dynamical Systems, 6 (2000), 773-796. doi: 10.3934/dcds.2000.6.773.

[4]

F. Blume, On the relation between entropy and the average complexity of trajectories in dynamical systems, Computational Complexity, 9 (2000), 146-155. doi: 10.1007/PL00001604.

[5]

F. Blume, On the relation between entropy convergence rates and Baire category, Mathematische Zeitschrift, 271 (2012), 723-750. doi: 10.1007/s00209-011-0887-6.

[6]

F. Blume, Possible rates of entropy convergence, Ergodic Theory and Dynamical Systems, 17 (1997), 45-70. doi: 10.1017/S0143385797069733.

[7]

F. Blume, The Rate of Entropy Convergence, Doctoral Dissertation, University of North Carolina at Chapel Hill, 1995.

[8]

A. Katok and J.-P. Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, 33 (1997), 323-338. doi: 10.1016/S0246-0203(97)80094-5.

[9]

W. Parry, Entropy and Generators in Ergodic Theory, Benjamin, New York, 1969.

[10]

K. E. Petersen, Ergodic Theory, Cambridge University Press, New York, 1983. doi: 10.1017/CBO9780511608728.

[1]

Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339

[2]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[3]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[4]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[5]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[6]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[7]

Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127

[8]

Alexandre A. Rodrigues. Rank-one strange attractors versus heteroclinic tangles. Communications on Pure and Applied Analysis, 2022, 21 (9) : 3213-3245. doi: 10.3934/cpaa.2022097

[9]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[10]

Karsten Keller, Sergiy Maksymenko, Inga Stolz. Entropy determination based on the ordinal structure of a dynamical system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3507-3524. doi: 10.3934/dcdsb.2015.20.3507

[11]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[12]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[13]

Wen Huang, Leiye Xu, Shengnan Xu. Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29 (4) : 2819-2827. doi: 10.3934/era.2021015

[14]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic and Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[15]

Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

[16]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[17]

Yasushi Narushima, Shummin Nakayama. A proximal quasi-Newton method based on memoryless modified symmetric rank-one formula. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022123

[18]

Hong Seng Sim, Chuei Yee Chen, Wah June Leong, Jiao Li. Nonmonotone spectral gradient method based on memoryless symmetric rank-one update for large-scale unconstrained optimization. Journal of Industrial and Management Optimization, 2022, 18 (6) : 3975-3988. doi: 10.3934/jimo.2021143

[19]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[20]

Gabriele Link, Jean-Claude Picaud. Ergodic geometry for non-elementary rank one manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6257-6284. doi: 10.3934/dcds.2016072

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (224)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]