Advanced Search
Article Contents
Article Contents

Topological entropy for set-valued maps

Abstract Related Papers Cited by
  • In this paper we define and study the topological entropy of a set-valued dynamical system. Actually, we obtain two entropies based on separated and spanning sets. Some properties of these entropies resembling the single-valued case will be obtained.
    Mathematics Subject Classification: Primary: 37B40; Secondary: 54C60.


    \begin{equation} \\ \end{equation}
  • [1]

    R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.doi: 10.1090/S0002-9947-1965-0175106-9.


    E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics, 1, American Mathematical Society, Providence, RI, 1993.


    J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin, 1984.doi: 10.1007/978-3-642-69512-4.


    J.-P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser Boston, Inc., Boston, MA, 1990; Modern Birkhäuser Classics, Birkhüser Boston, Inc., Boston, MA, 2009.


    J.-P. Aubin, H. Frankowska and A. Lasota, Poincaré's recurrence theorem for set-valued dynamical systems, Ann. Polon. Math., 54 (1991), 85-91.


    L. M. Blumenthal, A new concept in distance geometry with applications to spherical subsets, Bull. Amer. Math. Soc., 47 (1941), 435-443.doi: 10.1090/S0002-9904-1941-07471-9.


    L. Boltzmann, Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht, Wiener Berichte, 76 (1877), 373-435.


    R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X.


    M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002.doi: 10.1017/CBO9780511755316.


    R. S. Burachik and A. N. Iusem, Set-valued Mappings and Enlargements of Monotone Operators, Springer Optimization and Its Applications, 8, Springer, New York, 2008.


    L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow, Lecture Notes in Economics and Mathematical Systems, 158, Springer-Verlag, Berlin-New York, 1978.


    M. Ciklová, Dynamical systems generated by functions with connected $G_\delta$ graphs, Real Anal. Exchange, 30 (2004/05), 617-637.


    R. Clausius, Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Annalen der Physik, 125, 353-400.


    R. Clausius, The Mechanical Theory of Heat - with its Applications to the Steam Engine and to Physical Properties of Bodies, John van Voorst, London, 1867.


    E. I. Dinaburg, A correlation between topological entropy and metric entropy (Russian), Dokl. Akad. Nauk SSSR, 190 (1970), 19-22.


    T. Downarowicz, Entropy in Dynamical Systems, New Mathematical Monographs, 18, Cambridge University Press, Cambridge, 2011.doi: 10.1017/CBO9780511976155.


    B. E. Gillam, A new set of postulates for euclidean geometry, Revista Ci. Lima, 42 (1940), 869-899.


    A. Katok, Fifty years of entropy in dynamics: 1958-2007, J. Mod. Dyn., 1 (2007), 545-596.doi: 10.3934/jmd.2007.1.545.


    A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.


    A. Y. Khinchin, On the basic theorems of information theory, Uspehi Mat. Nauk (N.S.), 11 (1956), 17-75.


    A. N. Kolmogorov, A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces, (Russian) Topology, ordinary differential equations, dynamical systems, Trudy Mat. Inst. Steklov., 169 (1985), 94-98, 254.


    M. Maschler and B. Peleg, Stable sets and stable points of set-valued dynamic systems with applications to game theory, SIAM J. Control Optimization, 14 (1976), 985-995.doi: 10.1137/0314062.


    B. McMillan, The basic theorems of information theory, Ann. Math. Statistics, 24 (1953), 196-219.doi: 10.1214/aoms/1177729028.


    W. M. Miller, Frobenius-Perron operators and approximation of invariant measures for set-valued dynamical systems, Set-Valued Anal., 3 (1995), 181-194.doi: 10.1007/BF01038599.


    W. Miller and E. Akin, Invariant measures for set-valued dynamical systems, Trans. Amer. Math. Soc., 351 (1999), 1203-1225.doi: 10.1090/S0002-9947-99-02424-1.


    S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case, Topol. Methods Nonlinear Anal., 32 (2008), 139-149.


    S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems, Hyperbolic case, Topol. Methods Nonlinear Anal., 32 (2008), 151-164.


    R. T. Rockafellar, Convex Analysis, Reprint of the 1970 original, Princeton Landmarks in Mathematics, Princeton Paperbacks, Princeton University Press, Princeton, NJ, 1997.


    Ja. Sinai, On the concept of entropy for a dynamic system, (Russian) Dokl. Akad. Nauk SSSR, 124 (1959), 768-771.


    Y. Sinai, Kolmogorov-Sinai entropy, Scholarpedia, 4 (2009), p2034.


    C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379-423, 623-656.doi: 10.1002/j.1538-7305.1948.tb01338.x.


    E. Tarafdar, P. Watson and X.-Z. Yuan, Poincare's recurrence theorems for set-valued dynamical systems, Appl. Math. Lett., 10 (1997), 37-44.doi: 10.1016/S0893-9659(97)00102-X.


    E. Tarafdar and X.-Z. Yuan, The set-valued dynamic system and its applications to Pareto optima, Acta Appl. Math., 46 (1997), 93-106.doi: 10.1023/A:1005722506504.


    J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Unveränderter Nachdruck der ersten Auflage von 1932, Die Grundlehren der mathematischen Wissenschaften, Band 38, Springer-Verlag, Berlin-New York, 1968.


    P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.


    A. J. Zaslavski, Convergence of trajectories of discrete dispersive dynamical systems, Commun. Math. Anal., 4 (2008), 10-19.

  • 加载中

Article Metrics

HTML views() PDF downloads(483) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint