December  2015, 20(10): 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

A note on specification for iterated function systems

1. 

Department of Mathematics, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, CT, 21945-970, Brazil

2. 

Mathematics Department, The Pennsylvania State University, State College, PA 16802, United States

3. 

Department of Mathematics, Graduate School of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810

Received  December 2014 Revised  March 2015 Published  September 2015

We introduce several notions of specification for iterated function systems and exhibit some of their dynamical properties. In particular, we show that topological entropy and algebraic pressure [4] of systems with specification are approximable by the corresponding expressions for finitely generated iterated function systems.
Citation: Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475
References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X.

[2]

M. Denker, Y. Kifer and M. Stadlbauer, Thermodynamic formalism for random countable Markov shifts, Discrete Contin. Dyn. Syst., 22 (2008), 131-164. doi: 10.3934/dcds.2008.22.131.

[3]

M. Denker, Einführung in die Analysis Dynamischer Systeme, Springer-Lehrbuch, Springer-Verlag, Berlin, 2005.

[4]

M. Denker and M. Yuri, Conformal families of measures for general iterated function systems, Contemporary Math., 631 (2015), 93-108. doi: 10.1090/conm/631/12598.

[5]

B. M. Gurevic, Topological entropy for denumerable Markov chains, Dokl. Akad. Nauk., SSSR 187 (1969), 715-718; Engl. transl. in Soviet Math. Dokl., 10 (1969), 911-915.

[6]

O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory & Dynamical Systems, 19 (1999), 1565-1593. doi: 10.1017/S0143385799146820.

[7]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

show all references

References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X.

[2]

M. Denker, Y. Kifer and M. Stadlbauer, Thermodynamic formalism for random countable Markov shifts, Discrete Contin. Dyn. Syst., 22 (2008), 131-164. doi: 10.3934/dcds.2008.22.131.

[3]

M. Denker, Einführung in die Analysis Dynamischer Systeme, Springer-Lehrbuch, Springer-Verlag, Berlin, 2005.

[4]

M. Denker and M. Yuri, Conformal families of measures for general iterated function systems, Contemporary Math., 631 (2015), 93-108. doi: 10.1090/conm/631/12598.

[5]

B. M. Gurevic, Topological entropy for denumerable Markov chains, Dokl. Akad. Nauk., SSSR 187 (1969), 715-718; Engl. transl. in Soviet Math. Dokl., 10 (1969), 911-915.

[6]

O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory & Dynamical Systems, 19 (1999), 1565-1593. doi: 10.1017/S0143385799146820.

[7]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

[1]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[2]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[3]

Saisai Shi, Bo Tan, Qinglong Zhou. Best approximation of orbits in iterated function systems. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4085-4104. doi: 10.3934/dcds.2021029

[4]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[5]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[6]

De-Jun Feng, Antti Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 699-708. doi: 10.3934/dcds.2011.30.699

[7]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545

[8]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[9]

Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341

[10]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[11]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[14]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5873-5903. doi: 10.3934/dcdsb.2021070

[15]

Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 27-40. doi: 10.3934/mbe.2009.6.27

[16]

Xinsheng Wang, Weisheng Wu, Yujun Zhu. Local unstable entropy and local unstable pressure for random partially hyperbolic dynamical systems. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 81-105. doi: 10.3934/dcds.2020004

[17]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[18]

Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365

[19]

Hanchun Yang, Meimei Zhang, Qin Wang. Global solutions of shock reflection problem for the pressure gradient system. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3387-3428. doi: 10.3934/cpaa.2020150

[20]

Gui-Qiang G. Chen, Qin Wang, Shengguo Zhu. Global solutions of a two-dimensional Riemann problem for the pressure gradient system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2475-2503. doi: 10.3934/cpaa.2021014

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (203)
  • HTML views (0)
  • Cited by (0)

[Back to Top]