-
Previous Article
Two results on entropy, chaos and independence in symbolic dynamics
- DCDS-B Home
- This Issue
-
Next Article
Topological entropy for set-valued maps
A note on specification for iterated function systems
1. | Department of Mathematics, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, CT, 21945-970, Brazil |
2. | Mathematics Department, The Pennsylvania State University, State College, PA 16802, United States |
3. | Department of Mathematics, Graduate School of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810 |
References:
[1] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[2] |
M. Denker, Y. Kifer and M. Stadlbauer, Thermodynamic formalism for random countable Markov shifts,, Discrete Contin. Dyn. Syst., 22 (2008), 131.
doi: 10.3934/dcds.2008.22.131. |
[3] |
M. Denker, Einführung in die Analysis Dynamischer Systeme,, Springer-Lehrbuch, (2005).
|
[4] |
M. Denker and M. Yuri, Conformal families of measures for general iterated function systems,, Contemporary Math., 631 (2015), 93.
doi: 10.1090/conm/631/12598. |
[5] |
B. M. Gurevic, Topological entropy for denumerable Markov chains,, Dokl. Akad. Nauk., SSSR 187 (1969), 715.
|
[6] |
O. Sarig, Thermodynamic formalism for countable Markov shifts,, Ergodic Theory & Dynamical Systems, 19 (1999), 1565.
doi: 10.1017/S0143385799146820. |
[7] |
P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).
|
show all references
References:
[1] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[2] |
M. Denker, Y. Kifer and M. Stadlbauer, Thermodynamic formalism for random countable Markov shifts,, Discrete Contin. Dyn. Syst., 22 (2008), 131.
doi: 10.3934/dcds.2008.22.131. |
[3] |
M. Denker, Einführung in die Analysis Dynamischer Systeme,, Springer-Lehrbuch, (2005).
|
[4] |
M. Denker and M. Yuri, Conformal families of measures for general iterated function systems,, Contemporary Math., 631 (2015), 93.
doi: 10.1090/conm/631/12598. |
[5] |
B. M. Gurevic, Topological entropy for denumerable Markov chains,, Dokl. Akad. Nauk., SSSR 187 (1969), 715.
|
[6] |
O. Sarig, Thermodynamic formalism for countable Markov shifts,, Ergodic Theory & Dynamical Systems, 19 (1999), 1565.
doi: 10.1017/S0143385799146820. |
[7] |
P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).
|
[1] |
Saisai Shi, Bo Tan, Qinglong Zhou. Best approximation of orbits in iterated function systems. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021029 |
[2] |
Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469 |
[3] |
François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275 |
[4] |
De-Jun Feng, Antti Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 699-708. doi: 10.3934/dcds.2011.30.699 |
[5] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[6] |
Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449 |
[7] |
Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235 |
[8] |
Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341 |
[9] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545 |
[10] |
Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 |
[11] |
Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060 |
[12] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[13] |
David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499 |
[14] |
Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795 |
[15] |
Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 27-40. doi: 10.3934/mbe.2009.6.27 |
[16] |
Xinsheng Wang, Weisheng Wu, Yujun Zhu. Local unstable entropy and local unstable pressure for random partially hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 81-105. doi: 10.3934/dcds.2020004 |
[17] |
Kyungwoo Song, Yuxi Zheng. Semi-hyperbolic patches of solutions of the pressure gradient system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1365-1380. doi: 10.3934/dcds.2009.24.1365 |
[18] |
Hanchun Yang, Meimei Zhang, Qin Wang. Global solutions of shock reflection problem for the pressure gradient system. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3387-3428. doi: 10.3934/cpaa.2020150 |
[19] |
Gui-Qiang G. Chen, Qin Wang, Shengguo Zhu. Global solutions of a two-dimensional Riemann problem for the pressure gradient system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021014 |
[20] |
Rodolfo Mendoza-Gómez, Roger Z. Ríos-Mercado, Karla B. Valenzuela-Ocaña. An iterated greedy algorithm with variable neighborhood descent for the planning of specialized diagnostic services in a segmented healthcare system. Journal of Industrial & Management Optimization, 2020, 16 (2) : 857-885. doi: 10.3934/jimo.2018182 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]