December  2015, 20(10): 3507-3524. doi: 10.3934/dcdsb.2015.20.3507

Entropy determination based on the ordinal structure of a dynamical system

1. 

Universität zu Lübeck, Institut für Mathematik, Ratzeburger Allee 160, 23562 Lübeck

2. 

Institute of Mathematics of NAS of Ukraine, Tereshchenkivs'ka str., 3, 01601 Kyiv

3. 

Universität zu Lübeck, Institut für Mathematik, Ratzeburger Allee 160, Lübeck, 23562, Germany

Received  December 2014 Revised  February 2015 Published  September 2015

The ordinal approach to evaluate time series due to innovative works of Bandt and Pompe has increasingly established itself among other techniques of nonlinear time series analysis. In this paper, we summarize and generalize the theory of determining the Kolmogorov-Sinai entropy of a measure-preserving dynamical system via increasing sequences of order generated partitions of the state space. Our main focus are measuring processes without information loss. Particularly, we consider the question of the minimal necessary number of measurements related to the properties of a given dynamical system.
Citation: Karsten Keller, Sergiy Maksymenko, Inga Stolz. Entropy determination based on the ordinal structure of a dynamical system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3507-3524. doi: 10.3934/dcdsb.2015.20.3507
References:
[1]

J. M. Amigó, K. Keller and V. A. Unakafova, Ordinal symbolic analysis and its application to biomedical recordings, Philosophical Transactions Royal Society A, 373 (2015), 20140091, 18pp.

[2]

J. M. Amigó, K. Keller and J. Kurths (eds.), Recent progess in symbolic dynamics and permutation complexity. Ten years of permutation entropy, The European Physical Journal Special Topics, 222 (2013), 241-598.

[3]

J. M. Amigó, The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized, Physica D: Nonlinear Phenomena, 241 (2012), 789-793. doi: 10.1016/j.physd.2012.01.004.

[4]

J. M. Amigó, Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That, Springer Series in Synergetics, Springer Complexity, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-04084-9.

[5]

J. M. Amigó, M. B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D: Nonlinear Phenomena, 210 (2005), 77-95. doi: 10.1016/j.physd.2005.07.006.

[6]

A. Antoniouk, K. Keller and S. Maksymenko, Kolmogorov-Sinai entropy via separation properties of order-generated sigma-algebras, Discrete and Continuous Dynamical Systems - A, 34 (2014), 1793-1809.

[7]

C. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations, Nonlinearity, 15 (2002), 1595-1602. doi: 10.1088/0951-7715/15/5/312.

[8]

C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Physical Review Letters, 88 (2002), 174102.

[9]

M. Einsiedler, E. Lindenstrauss and T. Ward, Entropy in ergodic theory and homogeneous dynamics, unpublished, [access: July 02, 2014]. Available from: http://maths.dur.ac.uk/~tpcc68/entropy/welcome.html.

[10]

M. Einsiedler and T. Ward, Ergodic Theory With a View Towards Number Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 2010.

[11]

W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series, 4, Princeton University Press, Princeton, New Jersey, 1941.

[12]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.

[13]

K. Keller, Permutations and the Kolmogorov-Sinai entropy, Discrete and Continuous Dynamical Systems - A, 32 (2012), 891-900. doi: 10.3934/dcds.2012.32.891.

[14]

K. Keller and M. Sinn, Kolmogorov-Sinai entropy from the ordinal viewpoint, Physica D: Nonlinear Phenomena, 239 (2010), 997-1000. doi: 10.1016/j.physd.2010.02.006.

[15]

K. Keller and M. Sinn, A standardized approach to the Kolmogorov-Sinai entropy, Nonlinearity, 22 (2009), 2417-2422. doi: 10.1088/0951-7715/22/10/006.

[16]

K. Keller, M. Sinn and J. Emonds, Time series from the ordinal viewpoint, Stochastics and Dynamics, 7 (2007), 247-272. doi: 10.1142/S0219493707002025.

[17]

K. Keller, A. M. Unakafov and V. A. Unakafova, On the relation of KS entropy and permutation entropy, Physica D: Nonlinear Phenomena, 241 (2012), 1477-1481. doi: 10.1016/j.physd.2012.05.010.

[18]

W. Krieger, On entropy and generators of measure-preserving transformations, Transactions of the American Mathematical Society, 149 (1970), 453-464. doi: 10.1090/S0002-9947-1970-0259068-3.

[19]

W. Parry, Generators and strong generators in ergodic theory, Bulletin of the American Mathematical Society, 72 (1966), 294-296. doi: 10.1090/S0002-9904-1966-11498-2.

[20]

M. Riedl, A. Müller and N. Wessel, Practical considerations of permutation entropy; a tutorial review, The European Physical Journal Special Topics, 222 (2013), 249-262.

[21]

V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, 25 (1961), 499-530; English translation: American Mathematical Society Translations, 39 (1964), 1-36.

[22]

T. Sauer, J. A. Yorke and M. Casdagli, Embeddology, Journal of Statistical Physics, 65 (1991), 579-616. doi: 10.1007/BF01053745.

[23]

F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence (eds. D. A. Rand and L. S. Young), Lecture Notes in Mathematics, 898, Springer-Verlag, Berlin New York, 1981, 366-381.

[24]

A. M. Unakafov and K. Keller, Conditional entropy of ordinal patterns, Physica D: Nonlinear Phenomena, 269 (2014), 94-102. doi: 10.1016/j.physd.2013.11.015.

[25]

V. A. Unakafova and K. Keller, Efficiently measuring complexity on the basis of real-world data, Entropy, 15 (2013), 4392-4415. doi: 10.3390/e15104392.

[26]

V. A. Unakafova, A. M. Unakafov and K. Keller, An approach to comparing Kolmogorov-Sinai and permutation entropy, The European Physical Journal Special Topics, 222 (2013), 353-361. doi: 10.1140/epjst/e2013-01846-7.

[27]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-5775-2.

[28]

M. Zanin, L. Zunino, O. A. Rosso and D. Papo, Permutation entropy and its main biomedical and econophysics applications: A review, Entropy, 14 (2012), 1553-1577. doi: 10.3390/e14081553.

show all references

References:
[1]

J. M. Amigó, K. Keller and V. A. Unakafova, Ordinal symbolic analysis and its application to biomedical recordings, Philosophical Transactions Royal Society A, 373 (2015), 20140091, 18pp.

[2]

J. M. Amigó, K. Keller and J. Kurths (eds.), Recent progess in symbolic dynamics and permutation complexity. Ten years of permutation entropy, The European Physical Journal Special Topics, 222 (2013), 241-598.

[3]

J. M. Amigó, The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized, Physica D: Nonlinear Phenomena, 241 (2012), 789-793. doi: 10.1016/j.physd.2012.01.004.

[4]

J. M. Amigó, Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That, Springer Series in Synergetics, Springer Complexity, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-04084-9.

[5]

J. M. Amigó, M. B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D: Nonlinear Phenomena, 210 (2005), 77-95. doi: 10.1016/j.physd.2005.07.006.

[6]

A. Antoniouk, K. Keller and S. Maksymenko, Kolmogorov-Sinai entropy via separation properties of order-generated sigma-algebras, Discrete and Continuous Dynamical Systems - A, 34 (2014), 1793-1809.

[7]

C. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations, Nonlinearity, 15 (2002), 1595-1602. doi: 10.1088/0951-7715/15/5/312.

[8]

C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Physical Review Letters, 88 (2002), 174102.

[9]

M. Einsiedler, E. Lindenstrauss and T. Ward, Entropy in ergodic theory and homogeneous dynamics, unpublished, [access: July 02, 2014]. Available from: http://maths.dur.ac.uk/~tpcc68/entropy/welcome.html.

[10]

M. Einsiedler and T. Ward, Ergodic Theory With a View Towards Number Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 2010.

[11]

W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series, 4, Princeton University Press, Princeton, New Jersey, 1941.

[12]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.

[13]

K. Keller, Permutations and the Kolmogorov-Sinai entropy, Discrete and Continuous Dynamical Systems - A, 32 (2012), 891-900. doi: 10.3934/dcds.2012.32.891.

[14]

K. Keller and M. Sinn, Kolmogorov-Sinai entropy from the ordinal viewpoint, Physica D: Nonlinear Phenomena, 239 (2010), 997-1000. doi: 10.1016/j.physd.2010.02.006.

[15]

K. Keller and M. Sinn, A standardized approach to the Kolmogorov-Sinai entropy, Nonlinearity, 22 (2009), 2417-2422. doi: 10.1088/0951-7715/22/10/006.

[16]

K. Keller, M. Sinn and J. Emonds, Time series from the ordinal viewpoint, Stochastics and Dynamics, 7 (2007), 247-272. doi: 10.1142/S0219493707002025.

[17]

K. Keller, A. M. Unakafov and V. A. Unakafova, On the relation of KS entropy and permutation entropy, Physica D: Nonlinear Phenomena, 241 (2012), 1477-1481. doi: 10.1016/j.physd.2012.05.010.

[18]

W. Krieger, On entropy and generators of measure-preserving transformations, Transactions of the American Mathematical Society, 149 (1970), 453-464. doi: 10.1090/S0002-9947-1970-0259068-3.

[19]

W. Parry, Generators and strong generators in ergodic theory, Bulletin of the American Mathematical Society, 72 (1966), 294-296. doi: 10.1090/S0002-9904-1966-11498-2.

[20]

M. Riedl, A. Müller and N. Wessel, Practical considerations of permutation entropy; a tutorial review, The European Physical Journal Special Topics, 222 (2013), 249-262.

[21]

V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, 25 (1961), 499-530; English translation: American Mathematical Society Translations, 39 (1964), 1-36.

[22]

T. Sauer, J. A. Yorke and M. Casdagli, Embeddology, Journal of Statistical Physics, 65 (1991), 579-616. doi: 10.1007/BF01053745.

[23]

F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence (eds. D. A. Rand and L. S. Young), Lecture Notes in Mathematics, 898, Springer-Verlag, Berlin New York, 1981, 366-381.

[24]

A. M. Unakafov and K. Keller, Conditional entropy of ordinal patterns, Physica D: Nonlinear Phenomena, 269 (2014), 94-102. doi: 10.1016/j.physd.2013.11.015.

[25]

V. A. Unakafova and K. Keller, Efficiently measuring complexity on the basis of real-world data, Entropy, 15 (2013), 4392-4415. doi: 10.3390/e15104392.

[26]

V. A. Unakafova, A. M. Unakafov and K. Keller, An approach to comparing Kolmogorov-Sinai and permutation entropy, The European Physical Journal Special Topics, 222 (2013), 353-361. doi: 10.1140/epjst/e2013-01846-7.

[27]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York, 2000. doi: 10.1007/978-1-4612-5775-2.

[28]

M. Zanin, L. Zunino, O. A. Rosso and D. Papo, Permutation entropy and its main biomedical and econophysics applications: A review, Entropy, 14 (2012), 1553-1577. doi: 10.3390/e14081553.

[1]

Karsten Keller. Permutations and the Kolmogorov-Sinai entropy. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 891-900. doi: 10.3934/dcds.2012.32.891

[2]

Tim Gutjahr, Karsten Keller. Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4207-4224. doi: 10.3934/dcds.2019170

[3]

Alexandra Antoniouk, Karsten Keller, Sergiy Maksymenko. Kolmogorov-Sinai entropy via separation properties of order-generated $\sigma$-algebras. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1793-1809. doi: 10.3934/dcds.2014.34.1793

[4]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[5]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

[6]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[7]

Stefano Barbero, Emanuele Bellini, Rusydi H. Makarim. Rotational analysis of ChaCha permutation. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021057

[8]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[9]

Zehan Lin, Chongbin Xu, Caidi Zhao, Chujin Li. Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022065

[10]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[11]

Yu-Ting Lin, John Malik, Hau-Tieng Wu. Wave-shape oscillatory model for nonstationary periodic time series analysis. Foundations of Data Science, 2021, 3 (2) : 99-131. doi: 10.3934/fods.2021009

[12]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[13]

Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic and Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701

[14]

María Anguiano, Alain Haraux. The $\varepsilon$-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors. Evolution Equations and Control Theory, 2017, 6 (3) : 345-356. doi: 10.3934/eect.2017018

[15]

José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301

[16]

Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226

[17]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[18]

Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395

[19]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[20]

Karl Petersen, Ibrahim Salama. Entropy on regular trees. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4453-4477. doi: 10.3934/dcds.2020186

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (174)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]