March  2015, 20(2): 587-597. doi: 10.3934/dcdsb.2015.20.587

Concentration phenomenon in a nonlocal equation modeling phytoplankton growth

1. 

Department of Mathematics, Henan Normal University, Xinxiang, Henan 453007, China

2. 

Department of Mathematics, Hebei University of Engineering, Handan, Hebei 056021, China, China

Received  June 2013 Revised  November 2014 Published  January 2015

We study a nonlocal reaction-diffusion-advection equation arising from the study of a single phytoplankton species competing for light in a poorly mixed water column. When the diffusion coefficient is very small, the phytoplankton population concentrates around certain zeros of the advection function. The corresponding phytoplankton distribution approaches a $\delta$-like function centered at those zeros.
Citation: Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587
References:
[1]

F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Pitman Res, Notes Math. Ser. 368, Longman Sci., 1997.

[2]

X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658. doi: 10.1512/iumj.2008.57.3204.

[3]

Y. Du and S.-B. Hsu, Concentration phenomena in a nonlocal quasi-linear problem modelling phytoplankton I: Existence, SIAM J. Math. Anal., 40 (2008), 1419-1440. doi: 10.1137/07070663X.

[4]

Y. Du and S.-B. Hsu, Concentration phenomena in a nonlocal quasi-linear problem modelling phytoplankton II: Limiting profile, SIAM J. Math. Anal., 40 (2008), 1441-1470. doi: 10.1137/070706641.

[5]

Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modelling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333. doi: 10.1137/090775105.

[6]

Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modeling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349. doi: 10.1088/0951-7715/24/1/016.

[7]

W. M. Durham, J. O. Kessler and R. Stoker, Disruptive of vertical motility by shear triggers formation of phytoplankton layers, Science, 323 (2009), 1067-1070. doi: 10.1126/science.1167334.

[8]

J. Huisman, M. Arrayas, U. Ebert and B.Sommeijer, How do sinking phytoplankton species manage to persist? Amer. Naturalist, 159 (2002), 245-254. doi: 10.1086/338511.

[9]

U. Ebert, M. Arrays, N. Temme, B. Sommeijer and J. Huisman, Critical conditions for phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124. doi: 10.1006/bulm.2001.0261.

[10]

J. Huisman, P. Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light, Amer. Naturalist, 154 (1999), 46-68. doi: 10.1086/303220.

[11]

J. Huisman, N. N. Pham Thi, D. K. Karl and B. Sommeijer, Reduced mixing generates oscillations and chaos in oceanic deep chlorophyll, Nature, 439 (2006), 322-325. doi: 10.1038/nature04245.

[12]

J. Huisman and F. J. Wessing, Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model, Ecology, 75 (1994), 507-520. doi: 10.2307/1939554.

[13]

J. Huisman and F. J. Wessing, Competition for nutrients and light in a mixed water column: A theoretical analysis, Amer. Naturalist, 146 (1995), 536-564. doi: 10.1086/285814.

[14]

S.-B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974. doi: 10.1137/100782358.

[15]

H. Ishii and I. Takagi, Global stability of stationary solutions to a nonlinear diffusion equation in phytoplankton dynamics, J. Math. Biology, 16 (1982), 1-24. doi: 10.1007/BF00275157.

[16]

C. A. Klausmeier and E. Litchman, Algae games: The vertical distribution of pytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46 (2001), 1998-2007.

[17]

C. A. Klausmeier, E. Litchman and S. A. Levin, Phytoplankton growth and stoichimetry under multiple nutrient limitation, Limnol. Oceanogr., 49 (2004), 1463-1470. doi: 10.4319/lo.2004.49.4_part_2.1463.

[18]

E. Litchman, C. A. Klausmeier, J. R. Miller, O. M. Schofield and P. G. Falkowski, Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities, Biogeosci., 3 (2006), 585-606. doi: 10.5194/bg-3-585-2006.

[19]

N. Shigesada and A. Okubo, Analysis of the self-shading effect on algal vertical distribution in natural waters, J. Math. Biol., 12 (1981), 311-326. doi: 10.1007/BF00276919.

[20]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, Amer. Naturalist, 174 (2009), 190-203. doi: 10.1086/600113.

[21]

F. J. Weissing and J. Huisman, Growth and competition in a lighted gradient, J. Theoret. Biol., 168 (1994), 323-336. doi: 10.1006/jtbi.1994.1113.

show all references

References:
[1]

F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Pitman Res, Notes Math. Ser. 368, Longman Sci., 1997.

[2]

X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658. doi: 10.1512/iumj.2008.57.3204.

[3]

Y. Du and S.-B. Hsu, Concentration phenomena in a nonlocal quasi-linear problem modelling phytoplankton I: Existence, SIAM J. Math. Anal., 40 (2008), 1419-1440. doi: 10.1137/07070663X.

[4]

Y. Du and S.-B. Hsu, Concentration phenomena in a nonlocal quasi-linear problem modelling phytoplankton II: Limiting profile, SIAM J. Math. Anal., 40 (2008), 1441-1470. doi: 10.1137/070706641.

[5]

Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modelling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333. doi: 10.1137/090775105.

[6]

Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modeling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349. doi: 10.1088/0951-7715/24/1/016.

[7]

W. M. Durham, J. O. Kessler and R. Stoker, Disruptive of vertical motility by shear triggers formation of phytoplankton layers, Science, 323 (2009), 1067-1070. doi: 10.1126/science.1167334.

[8]

J. Huisman, M. Arrayas, U. Ebert and B.Sommeijer, How do sinking phytoplankton species manage to persist? Amer. Naturalist, 159 (2002), 245-254. doi: 10.1086/338511.

[9]

U. Ebert, M. Arrays, N. Temme, B. Sommeijer and J. Huisman, Critical conditions for phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124. doi: 10.1006/bulm.2001.0261.

[10]

J. Huisman, P. Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light, Amer. Naturalist, 154 (1999), 46-68. doi: 10.1086/303220.

[11]

J. Huisman, N. N. Pham Thi, D. K. Karl and B. Sommeijer, Reduced mixing generates oscillations and chaos in oceanic deep chlorophyll, Nature, 439 (2006), 322-325. doi: 10.1038/nature04245.

[12]

J. Huisman and F. J. Wessing, Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model, Ecology, 75 (1994), 507-520. doi: 10.2307/1939554.

[13]

J. Huisman and F. J. Wessing, Competition for nutrients and light in a mixed water column: A theoretical analysis, Amer. Naturalist, 146 (1995), 536-564. doi: 10.1086/285814.

[14]

S.-B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974. doi: 10.1137/100782358.

[15]

H. Ishii and I. Takagi, Global stability of stationary solutions to a nonlinear diffusion equation in phytoplankton dynamics, J. Math. Biology, 16 (1982), 1-24. doi: 10.1007/BF00275157.

[16]

C. A. Klausmeier and E. Litchman, Algae games: The vertical distribution of pytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46 (2001), 1998-2007.

[17]

C. A. Klausmeier, E. Litchman and S. A. Levin, Phytoplankton growth and stoichimetry under multiple nutrient limitation, Limnol. Oceanogr., 49 (2004), 1463-1470. doi: 10.4319/lo.2004.49.4_part_2.1463.

[18]

E. Litchman, C. A. Klausmeier, J. R. Miller, O. M. Schofield and P. G. Falkowski, Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities, Biogeosci., 3 (2006), 585-606. doi: 10.5194/bg-3-585-2006.

[19]

N. Shigesada and A. Okubo, Analysis of the self-shading effect on algal vertical distribution in natural waters, J. Math. Biol., 12 (1981), 311-326. doi: 10.1007/BF00276919.

[20]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, Amer. Naturalist, 174 (2009), 190-203. doi: 10.1086/600113.

[21]

F. J. Weissing and J. Huisman, Growth and competition in a lighted gradient, J. Theoret. Biol., 168 (1994), 323-336. doi: 10.1006/jtbi.1994.1113.

[1]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, 2021, 29 (5) : 3017-3030. doi: 10.3934/era.2021024

[2]

Chengxia Lei, Xinhui Zhou. Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3077-3100. doi: 10.3934/dcdsb.2021174

[3]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[4]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4867-4885. doi: 10.3934/dcdsb.2020316

[6]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations and Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[7]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[8]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[9]

Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575

[10]

Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez. Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension. Communications on Pure and Applied Analysis, 2022, 21 (3) : 891-925. doi: 10.3934/cpaa.2022003

[11]

Tarik Mohammed Touaoula, Mohammed Nor Frioui, Nikolay Bessonov, Vitaly Volpert. Dynamics of solutions of a reaction-diffusion equation with delayed inhibition. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2425-2442. doi: 10.3934/dcdss.2020193

[12]

Chunpeng Wang, Jingxue Yin, Bibo Lu. Anti-shifting phenomenon of a convective nonlinear diffusion equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1211-1236. doi: 10.3934/dcdsb.2010.14.1211

[13]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[14]

Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242

[15]

Ning Wang, Zhi-Cheng Wang. Propagation dynamics of a nonlocal time-space periodic reaction-diffusion model with delay. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1599-1646. doi: 10.3934/dcds.2021166

[16]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[17]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

[18]

J. García-Melián, Julio D. Rossi. A logistic equation with refuge and nonlocal diffusion. Communications on Pure and Applied Analysis, 2009, 8 (6) : 2037-2053. doi: 10.3934/cpaa.2009.8.2037

[19]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[20]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]