March  2015, 20(2): 599-612. doi: 10.3934/dcdsb.2015.20.599

Exponential decay for linear damped porous thermoelastic systems with second sound

1. 

King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran 31261

2. 

Laboratoire de thèorie des operateurs et EDP: fondements et applications, Faculté des Sciences et de technologie, Universit, El Oued 39000, Algeria

Received  March 2014 Revised  July 2014 Published  January 2015

In this paper, we investigate two problems in porous thermoelasticity where the heat conduction is given by Cattaneo's law and prove exponential decay results in the presence of both macro- and micro-dissipations.
Citation: Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599
References:
[1]

P. S. Casas and R. Quintanilla, Exponential decay in one-dimensional porous thermoelasticity, Mech. Res. Comm., 32 (2005), 652-658. doi: 10.1016/j.mechrescom.2005.02.015.

[2]

H. D. Fernàndez-Sare and R. Racke, On the stability of damped Timoshenko system Cattaneo versus Fourier law$^*$, Arch. Rat. Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2.

[3]

A. Guesmia, S. A. Messaoudi and A. Wehbe, Uniform decay in mildly damped Timoshenko system with non-equal wave speed propagation, Dynamic Systems and Applications, 21 (2012), 133-146.

[4]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. appl., 167 (1992), 429-442. doi: 10.1016/0022-247X(92)90217-2.

[5]

Z. J. Han and G. Q. Xu, Exponential decay result in non-uniform porous-thermo-elasticity model of Lord-Shulman type, Disc. Cont. Dyn. Sys. B, 17 (2012), 57-77. doi: 10.3934/dcdsb.2012.17.57.

[6]

H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Sol., 15 (1967), 299-309. doi: 10.1016/0022-5096(67)90024-5.

[7]

A. Magaña and R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials, Internat. J. Solids Struct., 43 (2006), 3414-3427. doi: 10.1016/j.ijsolstr.2005.06.077.

[8]

S. A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of equal speeds, Nonlinear analysis: TMA, 74 (2011), 6895-6906. doi: 10.1016/j.na.2011.07.012.

[9]

S. A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of nonequal speeds, Acta Mathimatica Scientia, 33 (2013), 23-40. doi: 10.1016/S0252-9602(12)60192-1.

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear damped Timoshenko system with second sound - Global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534. doi: 10.1002/mma.1049.

[11]

J. E. Muñoz Rivera, Energy decay rate in linear thermoelasticity, Funkcial Ekvac., 35 (1992), 19-30.

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278. doi: 10.1016/S0022-247X(02)00436-5.

[13]

J. E. Muñoz Rivera and R. Quintanilla, On the time polynomial decay in elastic solids with voids, J. Math. Anal. Appl., 338 (2008), 1296-1309. doi: 10.1016/j.jmaa.2007.06.005.

[14]

R. Quintanilla, Slow decay in one-dimensional porous dissipation elasticity, Applied Math. Letters, 16 (2003), 487-491. doi: 10.1016/S0893-9659(03)00025-9.

[15]

R. Racke, Thermoelasticity with second sound, exponential stability in linear and non linear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441. doi: 10.1002/mma.298.

[16]

R. Racke, Asymptotic behavior of solutions in linear 2- or 3-D thermoelasticity with second sound, Quart. Appl. Math., 61 (2003), 315-328.

[17]

M. L. Santos, D. S. Almeida Júnior and J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Diff. Eqns., 253 (2012), 2715-2733. doi: 10.1016/j.jde.2012.07.012.

[18]

A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type, Appl. Anal., 87 (2008), 451-464. doi: 10.1080/00036810802035634.

[19]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound, Quarterly of Applied Mathematics, 50 (1992), 727-742.

show all references

References:
[1]

P. S. Casas and R. Quintanilla, Exponential decay in one-dimensional porous thermoelasticity, Mech. Res. Comm., 32 (2005), 652-658. doi: 10.1016/j.mechrescom.2005.02.015.

[2]

H. D. Fernàndez-Sare and R. Racke, On the stability of damped Timoshenko system Cattaneo versus Fourier law$^*$, Arch. Rat. Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2.

[3]

A. Guesmia, S. A. Messaoudi and A. Wehbe, Uniform decay in mildly damped Timoshenko system with non-equal wave speed propagation, Dynamic Systems and Applications, 21 (2012), 133-146.

[4]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. appl., 167 (1992), 429-442. doi: 10.1016/0022-247X(92)90217-2.

[5]

Z. J. Han and G. Q. Xu, Exponential decay result in non-uniform porous-thermo-elasticity model of Lord-Shulman type, Disc. Cont. Dyn. Sys. B, 17 (2012), 57-77. doi: 10.3934/dcdsb.2012.17.57.

[6]

H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Sol., 15 (1967), 299-309. doi: 10.1016/0022-5096(67)90024-5.

[7]

A. Magaña and R. Quintanilla, On the time decay of solutions in one-dimensional theories of porous materials, Internat. J. Solids Struct., 43 (2006), 3414-3427. doi: 10.1016/j.ijsolstr.2005.06.077.

[8]

S. A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of equal speeds, Nonlinear analysis: TMA, 74 (2011), 6895-6906. doi: 10.1016/j.na.2011.07.012.

[9]

S. A. Messaoudi and A. Fareh, General decay for a porous thermoelastic system with memory: The case of nonequal speeds, Acta Mathimatica Scientia, 33 (2013), 23-40. doi: 10.1016/S0252-9602(12)60192-1.

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear damped Timoshenko system with second sound - Global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534. doi: 10.1002/mma.1049.

[11]

J. E. Muñoz Rivera, Energy decay rate in linear thermoelasticity, Funkcial Ekvac., 35 (1992), 19-30.

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278. doi: 10.1016/S0022-247X(02)00436-5.

[13]

J. E. Muñoz Rivera and R. Quintanilla, On the time polynomial decay in elastic solids with voids, J. Math. Anal. Appl., 338 (2008), 1296-1309. doi: 10.1016/j.jmaa.2007.06.005.

[14]

R. Quintanilla, Slow decay in one-dimensional porous dissipation elasticity, Applied Math. Letters, 16 (2003), 487-491. doi: 10.1016/S0893-9659(03)00025-9.

[15]

R. Racke, Thermoelasticity with second sound, exponential stability in linear and non linear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441. doi: 10.1002/mma.298.

[16]

R. Racke, Asymptotic behavior of solutions in linear 2- or 3-D thermoelasticity with second sound, Quart. Appl. Math., 61 (2003), 315-328.

[17]

M. L. Santos, D. S. Almeida Júnior and J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Diff. Eqns., 253 (2012), 2715-2733. doi: 10.1016/j.jde.2012.07.012.

[18]

A. Soufyane, Energy decay for porous-thermo-elasticity systems of memory type, Appl. Anal., 87 (2008), 451-464. doi: 10.1080/00036810802035634.

[19]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound, Quarterly of Applied Mathematics, 50 (1992), 727-742.

[1]

Salah Drabla, Salim A. Messaoudi, Fairouz Boulanouar. A general decay result for a multi-dimensional weakly damped thermoelastic system with second sound. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1329-1339. doi: 10.3934/dcdsb.2017064

[2]

Edriss S. Titi, Saber Trabelsi. Global well-posedness of a 3D MHD model in porous media. Journal of Geometric Mechanics, 2019, 11 (4) : 621-637. doi: 10.3934/jgm.2019031

[3]

Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274

[4]

Ivan C. Christov. On a C-integrable equation for second sound propagation in heated dielectrics. Evolution Equations and Control Theory, 2019, 8 (1) : 57-72. doi: 10.3934/eect.2019004

[5]

Pedro M. Jordan. Second-sound phenomena in inviscid, thermally relaxing gases. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2189-2205. doi: 10.3934/dcdsb.2014.19.2189

[6]

Yuxi Hu, Na Wang. On global solutions in one-dimensional thermoelasticity with second sound in the half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1671-1683. doi: 10.3934/cpaa.2015.14.1671

[7]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2975-2992. doi: 10.3934/dcdss.2021001

[8]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[9]

Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems and Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307

[10]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems and Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[11]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[12]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[13]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[14]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[15]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control and Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[16]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[17]

Jiang Xu. Well-posedness and stability of classical solutions to the multidimensional full hydrodynamic model for semiconductors. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1073-1092. doi: 10.3934/cpaa.2009.8.1073

[18]

Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122

[19]

Akram Ben Aissa. Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 983-993. doi: 10.3934/dcdss.2021106

[20]

Baoyan Sun, Kung-Chien Wu. Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2537-2562. doi: 10.3934/dcdsb.2021147

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (157)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]