-
Previous Article
A first order semi-discrete algorithm for backward doubly stochastic differential equations
- DCDS-B Home
- This Issue
- Next Article
Special section on differential equations: Theory, application, and numerical approximation
1. | Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849 |
2. | School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei 430074, China |
3. | Beijing Computational Science Research Center, Beijing 100084, China |
For more information please click the “Full Text” above.
[1] |
Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics and Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021 |
[2] |
Arnaud Münch, Ademir Fernando Pazoto. Boundary stabilization of a nonlinear shallow beam: theory and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 197-219. doi: 10.3934/dcdsb.2008.10.197 |
[3] |
Runzhang Xu. Preface: Special issue on advances in partial differential equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : i-i. doi: 10.3934/dcdss.2021137 |
[4] |
Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784 |
[5] |
Youssef El Hadfi, Zhaosheng Feng, Abdelghani Ghazdali, Amine Laghrib. Preface to the special issue "Partial Differential Equations, Optimization and their Applications". Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : i-ii. doi: 10.3934/dcdss.2021163 |
[6] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[7] |
Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057 |
[8] |
Joseph D. Fehribach. Using numerical experiments to discover theorems in differential equations. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 495-504. doi: 10.3934/dcdsb.2003.3.495 |
[9] |
Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188 |
[10] |
Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289 |
[11] |
Badam Ulemj, Enkhbat Rentsen, Batchimeg Tsendpurev. Application of survival theory in taxation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2573-2578. doi: 10.3934/jimo.2020083 |
[12] |
Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541 |
[13] |
Roman Srzednicki. A theorem on chaotic dynamics and its application to differential delay equations. Conference Publications, 2001, 2001 (Special) : 362-365. doi: 10.3934/proc.2001.2001.362 |
[14] |
Yanmin Niu, Xiong Li. An application of Moser's twist theorem to superlinear impulsive differential equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 431-445. doi: 10.3934/dcds.2019017 |
[15] |
Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007 |
[16] |
Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021069 |
[17] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[18] |
Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701 |
[19] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[20] |
Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]