May  2015, 20(3): 749-779. doi: 10.3934/dcdsb.2015.20.749

Pullback attractors for generalized evolutionary systems

1. 

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, Illinois 60607-7045, United States, United States

Received  December 2013 Revised  March 2014 Published  January 2015

We give an abstract framework for studying nonautonomous PDEs, called a generalized evolutionary system. In this setting, we define the notion of a pullback attractor. Moreover, we show that the pullback attractor, in the weak sense, must always exist. We then study the structure of these attractors and the existence of a strong pullback attractor. We then apply our framework to both autonomous and nonautonomous evolutionary systems as they first appeared in earlier works by Cheskidov, Foias, and Lu. In this con- text, we compare the pullback attractor to both the global attractor (in the autonomous case) and the uniform attractor (in the nonautonomous case). Finally, we apply our results to the nonautonomous 3D Navier-Stokes equations on a periodic domain with a translationally bounded force. We show that the Leray-Hopf weak solutions form a generalized evolutionary system and must then have a weak pullback attractor.
Citation: Alexey Cheskidov, Landon Kavlie. Pullback attractors for generalized evolutionary systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 749-779. doi: 10.3934/dcdsb.2015.20.749
References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502. doi: 10.1007/s003329900037.

[2]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201. doi: 10.1023/A:1022902802385.

[3]

T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour, Set-Valued Anal., 11 (2003), 297-322. doi: 10.1023/A:1024422619616.

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.

[5]

D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems, Interdisciplinary Mathematical Sciences, 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. doi: 10.1142/9789812563088.

[6]

V. Chepyzhov and M. Vishik, A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations, Indiana Univ. Math. J., 42 (1993), 1057-1076. doi: 10.1512/iumj.1993.42.42049.

[7]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. (9), 73 (1994), 279-333.

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.

[9]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754. doi: 10.1016/j.jde.2006.08.021.

[10]

A. Cheskidov and S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, Adv. Math., 267 (2014), 277-306. doi: 10.1016/j.aim.2014.09.005.

[11]

A. Cheskidov, Global attractors of evolutionary systems, J. Dynam. Differential Equations, 21 (2009), 249-268. doi: 10.1007/s10884-009-9133-x.

[12]

A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55-66. doi: 10.3934/dcdss.2009.2.55.

[13]

P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.

[15]

F. Flandoli and B. Schmalfuß, Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Differential Equations, 11 (1999), 355-398. doi: 10.1023/A:1021937715194.

[16]

C. Foias and R. Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory, in Directions in Partial Differential Equations (Madison, WI, 1985), Publ. Math. Res. Center Univ. Wisconsin, 54, Academic Press, Boston, MA, 1987, 55-73.

[17]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 17, Masson, Paris, 1991.

[18]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278. doi: 10.1016/j.jde.2007.06.008.

[19]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.

[20]

P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization, Dynamical Numerical Analysis (Atlanta, GA, 1995), Numer. Algorithms, 14 (1997), 141-152. doi: 10.1023/A:1019156812251.

[21]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.

[22]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719. doi: 10.3934/dcds.2005.13.701.

[23]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[24]

J. C. Robinson, Infinite-dimensional Dynamical Systems, An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.

[25]

R. M. S. Rosa, Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Differential Equations, 229 (2006), 257-269. doi: 10.1016/j.jde.2006.03.004.

[26]

G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1-33. doi: 10.1007/BF02218613.

[27]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.

[28]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.

[29]

M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of the three-dimensional Navier-Stokes system, Mat. Zametki, 71 (2002), 194-213. doi: 10.1023/A:1014190629738.

[30]

D. Vorotnikov, Asymptotic behavior of the non-autonomous 3D Navier-Stokes problem with coercive force, J. Differential Equations, 251 (2011), 2209-2225. doi: 10.1016/j.jde.2011.07.008.

show all references

References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502. doi: 10.1007/s003329900037.

[2]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201. doi: 10.1023/A:1022902802385.

[3]

T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour, Set-Valued Anal., 11 (2003), 297-322. doi: 10.1023/A:1024422619616.

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.

[5]

D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems, Interdisciplinary Mathematical Sciences, 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. doi: 10.1142/9789812563088.

[6]

V. Chepyzhov and M. Vishik, A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations, Indiana Univ. Math. J., 42 (1993), 1057-1076. doi: 10.1512/iumj.1993.42.42049.

[7]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. (9), 73 (1994), 279-333.

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.

[9]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754. doi: 10.1016/j.jde.2006.08.021.

[10]

A. Cheskidov and S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, Adv. Math., 267 (2014), 277-306. doi: 10.1016/j.aim.2014.09.005.

[11]

A. Cheskidov, Global attractors of evolutionary systems, J. Dynam. Differential Equations, 21 (2009), 249-268. doi: 10.1007/s10884-009-9133-x.

[12]

A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55-66. doi: 10.3934/dcdss.2009.2.55.

[13]

P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.

[15]

F. Flandoli and B. Schmalfuß, Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Differential Equations, 11 (1999), 355-398. doi: 10.1023/A:1021937715194.

[16]

C. Foias and R. Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory, in Directions in Partial Differential Equations (Madison, WI, 1985), Publ. Math. Res. Center Univ. Wisconsin, 54, Academic Press, Boston, MA, 1987, 55-73.

[17]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 17, Masson, Paris, 1991.

[18]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278. doi: 10.1016/j.jde.2007.06.008.

[19]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.

[20]

P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization, Dynamical Numerical Analysis (Atlanta, GA, 1995), Numer. Algorithms, 14 (1997), 141-152. doi: 10.1023/A:1019156812251.

[21]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.

[22]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719. doi: 10.3934/dcds.2005.13.701.

[23]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[24]

J. C. Robinson, Infinite-dimensional Dynamical Systems, An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.

[25]

R. M. S. Rosa, Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Differential Equations, 229 (2006), 257-269. doi: 10.1016/j.jde.2006.03.004.

[26]

G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1-33. doi: 10.1007/BF02218613.

[27]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.

[28]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.

[29]

M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of the three-dimensional Navier-Stokes system, Mat. Zametki, 71 (2002), 194-213. doi: 10.1023/A:1014190629738.

[30]

D. Vorotnikov, Asymptotic behavior of the non-autonomous 3D Navier-Stokes problem with coercive force, J. Differential Equations, 251 (2011), 2209-2225. doi: 10.1016/j.jde.2011.07.008.

[1]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[2]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[3]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[4]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[5]

P.E. Kloeden, José A. Langa, José Real. Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations. Communications on Pure and Applied Analysis, 2007, 6 (4) : 937-955. doi: 10.3934/cpaa.2007.6.937

[6]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

[7]

Grzegorz Łukaszewicz. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 643-659. doi: 10.3934/dcdsb.2008.9.643

[8]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[9]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[10]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[11]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[12]

Ioana Moise, Ricardo Rosa, Xiaoming Wang. Attractors for noncompact nonautonomous systems via energy equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 473-496. doi: 10.3934/dcds.2004.10.473

[13]

Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255

[14]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[15]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[16]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[17]

Xuewei Ju, Desheng Li, Jinqiao Duan. Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1175-1197. doi: 10.3934/dcdsb.2019011

[18]

Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang. Pullback dynamics of a 3D modified Navier-Stokes equations with double delays. Electronic Research Archive, 2021, 29 (6) : 4137-4157. doi: 10.3934/era.2021076

[19]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[20]

Pedro Marín-Rubio, José Real. Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 989-1006. doi: 10.3934/dcds.2010.26.989

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]