May  2015, 20(3): 833-852. doi: 10.3934/dcdsb.2015.20.833

Stochastic dynamics in a fluid--plate interaction model with the only longitudinal deformations of the plate

1. 

Department of Mechanics and Mathematics, Karazin Kharkov National University, Kharkov, 61022, Ukraine

2. 

Institut für Mathematik, Institut für Stochastik, Ernst Abbe Platz 2, 07737, Jena, Germany

Received  September 2013 Revised  February 2014 Published  January 2015

We consider a stochastically perturbed coupled system consisting of linearized 3D Navier--Stokes equations in a bounded domain and the classical (nonlinear) elastic plate equation for in-plane motions on a flexible flat part of the boundary. This kind of models arises in the study of blood flows in large arteries. Our main result states the existence of a random pullback attractor of finite fractal dimension. Our argument is based on some modification of the method of quasi-stability estimates recently developed for deterministic systems.
Citation: Igor Chueshov, Björn Schmalfuß. Stochastic dynamics in a fluid--plate interaction model with the only longitudinal deformations of the plate. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 833-852. doi: 10.3934/dcdsb.2015.20.833
References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

G. Avalos, The strong stability and instability of a fluid-structure semigroup, Appl. Math. Optim., 55 (2007), 163-184. doi: 10.1007/s00245-006-0884-z.

[3]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 417-447. doi: 10.3934/dcdss.2009.2.417.

[4]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, in Fluids and waves, Contemp. Math., 440, Amer. Math. Soc., Providence, RI, 2007, 55-82. doi: 10.1090/conm/440/08476.

[5]

H. Bauer, Probability Theory, Translated from the fourth (1991) German edition by Robert B. Burckel and revised by the author, de Gruyter Studies in Mathematics, 23, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110814668.

[6]

P. Boxler, Stochastisch Zentrumsmannigfaltigkeiten, Thesis, Bremen, 1988.

[7]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, 1977. doi: 10.1007/BFb0087685.

[8]

A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404. doi: 10.1007/s00021-004-0121-y.

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.

[10]

I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, 1779, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.

[11]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Math. Methods Appl. Sci., 34 (2011), 1801-1812. doi: 10.1002/mma.1496.

[12]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512. doi: 10.1007/s10884-004-4289-x.

[13]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.

[14]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Well-posedness and long-time dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[15]

I. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dynam. Differential Equations, 13 (2001), 355-380. doi: 10.1023/A:1016684108862.

[16]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Commun. Pure Appl. Anal., 12 (2013), 1635-1656. doi: 10.3934/cpaa.2013.12.1635.

[17]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, J. Differential Equations, 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[18]

I. Chueshov and I. Ryzhkova, Well-posedness and long time behavior for a class of fluid-plate interaction models, in System Modeling and Optimization (25th IFIP TC7 Conference, Berlin, Sept.2011) (eds. D. Hömberg and F. Tröltzsch), IFIP Advances in Information and Communication Technology, 391, Springer, Berlin, 2013, 328-337. doi: 10.1007/978-3-642-36062-6_33.

[19]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.

[20]

G. P. Galdi, C. G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$, Math. Ann., 331 (2005), 41-74. doi: 10.1007/s00208-004-0573-7.

[21]

M. Grobbelaar-Van Dalsen, On a fluid-structure model in which the dynamics of the structure involves the shear stress due to the fluid, J. Math. Fluid Mech., 10 (2008), 388-401. doi: 10.1007/s00021-006-0236-4.

[22]

M. Grobbelaar-Van Dalsen, A new approach to the stabilization of a fluid-structure interaction model, Appl. Anal., 88 (2009), 1053-1065. doi: 10.1080/00036810903114841.

[23]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988.

[24]

N. D. Kopachevskii and Y. S. Pashkova, Small oscillations of a viscous fluid in a vessel bounded by an elastic membrane, Russian J. Math. Phys., 5 (1997), 459-472 (1998).

[25]

J. E. Lagnese, Modelling and stabilization of nonlinear plates, in Estimation and Control of Distributed Parameter Systems (Vorau, 1990), Internat. Ser. Numer. Math., 100, Birkhäuser, Basel, 1991, 247-264.

[26]

J. E. Lagnese and J.-L. Lions, Modelling Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 6, Masson, Paris, 1988.

[27]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl. (9), 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001.

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[29]

T. J. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge, 1980. doi: 10.1017/CBO9780511896996.

[30]

K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1983. doi: 10.1017/CBO9780511608728.

[31]

B. Schmalfuß, The random attractor of the stochastic Lorenz system, Z. Angew. Math. Phys., 48 (1997), 951-975. doi: 10.1007/s000330050074.

[32]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.

[33]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, [2013 reprint of the 2001 original] [MR1928881], Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2001.

[34]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Second edition, Johann Ambrosius Barth, Heidelberg, 1995.

[36]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York, 1982.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

G. Avalos, The strong stability and instability of a fluid-structure semigroup, Appl. Math. Optim., 55 (2007), 163-184. doi: 10.1007/s00245-006-0884-z.

[3]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 417-447. doi: 10.3934/dcdss.2009.2.417.

[4]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, in Fluids and waves, Contemp. Math., 440, Amer. Math. Soc., Providence, RI, 2007, 55-82. doi: 10.1090/conm/440/08476.

[5]

H. Bauer, Probability Theory, Translated from the fourth (1991) German edition by Robert B. Burckel and revised by the author, de Gruyter Studies in Mathematics, 23, Walter de Gruyter & Co., Berlin, 1996. doi: 10.1515/9783110814668.

[6]

P. Boxler, Stochastisch Zentrumsmannigfaltigkeiten, Thesis, Bremen, 1988.

[7]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, 1977. doi: 10.1007/BFb0087685.

[8]

A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404. doi: 10.1007/s00021-004-0121-y.

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.

[10]

I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, 1779, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.

[11]

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Math. Methods Appl. Sci., 34 (2011), 1801-1812. doi: 10.1002/mma.1496.

[12]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512. doi: 10.1007/s10884-004-4289-x.

[13]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.

[14]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Well-posedness and long-time dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[15]

I. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dynam. Differential Equations, 13 (2001), 355-380. doi: 10.1023/A:1016684108862.

[16]

I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Commun. Pure Appl. Anal., 12 (2013), 1635-1656. doi: 10.3934/cpaa.2013.12.1635.

[17]

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, J. Differential Equations, 254 (2013), 1833-1862. doi: 10.1016/j.jde.2012.11.006.

[18]

I. Chueshov and I. Ryzhkova, Well-posedness and long time behavior for a class of fluid-plate interaction models, in System Modeling and Optimization (25th IFIP TC7 Conference, Berlin, Sept.2011) (eds. D. Hömberg and F. Tröltzsch), IFIP Advances in Information and Communication Technology, 391, Springer, Berlin, 2013, 328-337. doi: 10.1007/978-3-642-36062-6_33.

[19]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.

[20]

G. P. Galdi, C. G. Simader and H. Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$, Math. Ann., 331 (2005), 41-74. doi: 10.1007/s00208-004-0573-7.

[21]

M. Grobbelaar-Van Dalsen, On a fluid-structure model in which the dynamics of the structure involves the shear stress due to the fluid, J. Math. Fluid Mech., 10 (2008), 388-401. doi: 10.1007/s00021-006-0236-4.

[22]

M. Grobbelaar-Van Dalsen, A new approach to the stabilization of a fluid-structure interaction model, Appl. Anal., 88 (2009), 1053-1065. doi: 10.1080/00036810903114841.

[23]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988.

[24]

N. D. Kopachevskii and Y. S. Pashkova, Small oscillations of a viscous fluid in a vessel bounded by an elastic membrane, Russian J. Math. Phys., 5 (1997), 459-472 (1998).

[25]

J. E. Lagnese, Modelling and stabilization of nonlinear plates, in Estimation and Control of Distributed Parameter Systems (Vorau, 1990), Internat. Ser. Numer. Math., 100, Birkhäuser, Basel, 1991, 247-264.

[26]

J. E. Lagnese and J.-L. Lions, Modelling Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 6, Masson, Paris, 1988.

[27]

J. A. Langa and J. C. Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl. (9), 85 (2006), 269-294. doi: 10.1016/j.matpur.2005.08.001.

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[29]

T. J. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge, 1980. doi: 10.1017/CBO9780511896996.

[30]

K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1983. doi: 10.1017/CBO9780511608728.

[31]

B. Schmalfuß, The random attractor of the stochastic Lorenz system, Z. Angew. Math. Phys., 48 (1997), 951-975. doi: 10.1007/s000330050074.

[32]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.

[33]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, [2013 reprint of the 2001 original] [MR1928881], Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2001.

[34]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Second edition, Johann Ambrosius Barth, Heidelberg, 1995.

[36]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York, 1982.

[1]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[2]

Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations and Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016

[3]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[4]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[5]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[6]

Radosław Czaja. Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021276

[7]

Iryna Ryzhkova-Gerasymova. Long time behaviour of strong solutions to interactive fluid-plate system without rotational inertia. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1243-1265. doi: 10.3934/dcdsb.2018150

[8]

I. D. Chueshov. Interaction of an elastic plate with a linearized inviscid incompressible fluid. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1759-1778. doi: 10.3934/cpaa.2014.13.1759

[9]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[10]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[11]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[12]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[13]

Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028

[14]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[15]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2301-2328. doi: 10.3934/cpaa.2016038

[16]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[17]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[18]

Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347

[19]

Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations and Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020

[20]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]