October  2015, 20(8): i-ii. doi: 10.3934/dcdsb.2015.20.8i

Computational methods for Lyapunov functions

1. 

Department of Mathematics, University of Sussex, Falmer BN1 9QH

2. 

School of Science and Engineering, Reykjavik University, Menntavegi 1, IS-101 Reykjavik

Published  August 2015

Lyapunov functions, introduced by Lyapunov more than 100 years ago, are to this day one of the most important tools in the stability analysis of dynamical systems. They are functions which decrease along solution trajectories of systems, and they can be used to show stability of an invariant set, such as an equilibrium, as well as to determine its basin of attraction. Lyapunov functions have been considered for a variety of dynamical systems, such as continuous-times, discrete-time, linear, non-linear, non-smooth, switched, etc. Lyapunov functions are used and studied in different communities, such as Mathematics, Informatics and Engineering, often using different notations and methods.

For more information please click the “Full Text” above.
Citation: Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i
[1]

Peter Giesl, Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2291-2331. doi: 10.3934/dcdsb.2015.20.2291

[2]

Ian H. Dinwoodie. Computational methods for asynchronous basins. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3391-3405. doi: 10.3934/dcdsb.2016103

[3]

Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012

[4]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[5]

James Anderson, Antonis Papachristodoulou. Advances in computational Lyapunov analysis using sum-of-squares programming. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2361-2381. doi: 10.3934/dcdsb.2015.20.2361

[6]

Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i

[7]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[8]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure and Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

[9]

Gunther Dirr, Hiroshi Ito, Anders Rantzer, Björn S. Rüffer. Separable Lyapunov functions for monotone systems: Constructions and limitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2497-2526. doi: 10.3934/dcdsb.2015.20.2497

[10]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[11]

Tomoharu Suda. Construction of Lyapunov functions using Helmholtz–Hodge decomposition. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2437-2454. doi: 10.3934/dcds.2019103

[12]

Peter Giesl, Boumediene Hamzi, Martin Rasmussen, Kevin Webster. Approximation of Lyapunov functions from noisy data. Journal of Computational Dynamics, 2020, 7 (1) : 57-81. doi: 10.3934/jcd.2020003

[13]

Arnaud Goullet, Shaun Harker, Konstantin Mischaikow, William D. Kalies, Dinesh Kasti. Efficient computation of Lyapunov functions for Morse decompositions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2419-2451. doi: 10.3934/dcdsb.2015.20.2419

[14]

Jóhann Björnsson, Peter Giesl, Sigurdur F. Hafstein, Christopher M. Kellett. Computation of Lyapunov functions for systems with multiple local attractors. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4019-4039. doi: 10.3934/dcds.2015.35.4019

[15]

Peter Giesl, Sigurdur Hafstein. Existence of piecewise linear Lyapunov functions in arbitrary dimensions. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3539-3565. doi: 10.3934/dcds.2012.32.3539

[16]

Frédéric Grognard, Frédéric Mazenc, Alain Rapaport. Polytopic Lyapunov functions for persistence analysis of competing species. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 73-93. doi: 10.3934/dcdsb.2007.8.73

[17]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[18]

Connell McCluskey. Lyapunov functions for disease models with immigration of infected hosts. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4479-4491. doi: 10.3934/dcdsb.2020296

[19]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2021, 8 (2) : 131-152. doi: 10.3934/jcd.2021006

[20]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6027-6046. doi: 10.3934/dcdsb.2020378

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]