January  2015, 20(1): 93-105. doi: 10.3934/dcdsb.2015.20.93

Complex dynamics of a forced discretized version of the Mackey-Glass delay differential equation

1. 

Math. Dept., Faculty of Science, Damanhour University, Damanhour, Egypt

Received  June 2013 Revised  April 2014 Published  November 2014

In this paper, the chaotic behaviour of a forced discretized version of the Mackey-Glass delay differential equation is considered for different levels of noise intensity. The existence and stability of the equilibria of the skeleton are studied. The modified straight-line stabilization method is used to control chaos. The autocorrelation structure is discussed. Numerical simulations are employed to show the model's complex dynamics by means of the largest Lyapunov exponents, bifurcations, time series diagrams and phase portraits. The effects of noise intensity on its dynamics and the intermittency phenomenon are also discussed via simulation.
Citation: Ahmed Elhassanein. Complex dynamics of a forced discretized version of the Mackey-Glass delay differential equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 93-105. doi: 10.3934/dcdsb.2015.20.93
References:
[1]

I. Bashkirtseva and L. Ryashko, Stochastic sensitivity analysis of noise-induced intermittency and transition to chaos in one-dimensional discrete-time systems, Physica A, 392 (2013), 295-306. doi: 10.1016/j.physa.2012.09.001.

[2]

J. Brockwell and A. Davis, Time Series: Theory and Methods, $2^{nd}$ edition, Springer-Verlag, New York, 2006. doi: 10.1007/978-1-4419-0320-4.

[3]

J. H. E. Cartwright, Nonlinear stiffness, Lyapunov exponents, and attractor dimension, Phys. Lett. A, 264 (1999), 298-302. doi: 10.1016/S0375-9601(99)00793-8.

[4]

S. Chatterjee and M. Yilmaz, Chaos, fractals and statistics, Statist. Sci., 7 (1992), 49-68. Available from: http://www.jstor.org/discover/10.2307/2245990?uid=2&uid=4&sid=21104445119883. doi: 10.1214/ss/1177011443.

[5]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesely Reading, 1989.

[6]

J. Du, T. Huang and Z. Sheng, Analysis of decision-making in economic chaos control, Nonlinear Anal. Real World Appl., 10 (2009), 2493-2501. doi: 10.1016/j.nonrwa.2008.05.007.

[7]

S. N. Elaydi, An Introduction to Difference Equations, $3^{rd}$ edition, Springer-Verlag, New York, 2005.

[8]

A. Elhassanein, Complex dynamics of logistic self-exciting threshold autoregressive model, J. Comput. Theor. Nanosci., accepted.

[9]

A. Elhassanein, On the control of forced process feedback nonlinear autoregressive model, J. Comput. Theor. Nanosci., accepted.

[10]

A. Elhassanein, Complex dynamics of a stochastic discrete modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, Computational Ecology and Software, 4 (2014), 116-128. Available from: http://www.iaees.org/publications/journals/ces/articles/2014-4(2)/dynamics-of-a-stochastic-discrete-modified-Leslie-Gower-model.pdf.

[11]

A. Elhassanein, On the theory of continuous time series, Indian J. Pure Appl. Math., 45 (2014), 297-310. doi: 10.1007/s13226-014-0064-9.

[12]

A. Elhassanein, Nonparametric spectral analysis on disjoint segments of observations, JAMSI, 7 (2011), 81-96. Available from: http://jamsi.fpv.ucm.sk/docs/v07n01_05_2011/v07_n01_07_ELHASSANEIN.pdf.

[13]

W. A. Fuller, Introduction to Statistical Time Series, John Wiley & Sones, 1996.

[14]

J. Gao, J. Hu, W. Tung and Y. Zheng, Multiscale analysis of economic time series by scale-dependent Lyapunov exponent, Quantitative Finance, 13 (2013), 265-274. doi: 10.1080/14697688.2011.580774.

[15]

M. A. Ghazal and A. Elhassanein, Dynamics of EXPAR models for high frequency data, Int. J. Appl. Math. Stat., 14 (2009), 88-96. Available from: http://www.ceser.in/ceserp/index.php/ijamas/article/view/165.

[16]

M. A. Ghazal and A. Elhassanein, Spectral analysis of time series in joint segments of observations, J. Appl. Math. & Informatics, 26 (2008), 933-943. Available from: http://www.kcam.biz/contents/table_contents_view.php?Len=&idx=818.

[17]

M. A. Ghazal and A. Elhassanein, Nonparametric spectral analysis of continuous time Series, Bull. Stat. Econ., 1 (2007), 41-52. Available from: http://www.ceserp.com/cp-jour/index.php?journal=bse&page=article&op=view&path[]=483.

[18]

M. A. Ghazal and A. Elhassanein, Periodogram analysis with missing observations, J. Appl. Math. Comput., 22 (2006), 209-222. doi: 10.1007/BF02896472.

[19]

D. Gulick, Encounters with Chaos, McGraw Hill, New York, 1992.

[20]

L. Junges and J. A. C. Gallas, Intricate routes to chaos in the Mackey-Glass delayed feed back system, Physics letters A, 376 (2012), 2109-2116. doi: 10.1016/j.physleta.2012.05.022.

[21]

J. L. Kaplan and Y. A. Yorke, A regime observed in a fluid flow model of Lorenz, Comm. Math. Phys., 67 (1979), 93-108. Available from: http://projecteuclid.org/euclid.cmp/1103905158. doi: 10.1007/BF01221359.

[22]

M. Karanasos and C. Kyrtsou, Analyzing the link between stock volatility and volume by a Mackey-Glass GARCH-type model: The case of Korea, Quantitative and Qualitative Analysis in Social Sciences, 5 (2011), 49-69. Available from: http://www.qass.org.uk/2011/paper4.pdf.

[23]

C. Kyrtsou and M. Terraza, Seasonal Mackey-Glass-GARCH process and short-term dynamics, Emp. Econ., 38 (2010), 325-345. doi: 10.1007/s00181-009-0268-8.

[24]

C. Kyrtsou, Re-examining the sources of heteroskedasticity: The paradigm of noisy chaotic models, Physica A, 387 (2008), 6785-6789. doi: 10.1016/j.physa.2008.09.008.

[25]

C. Kyrtsou, Evidence for neglected linearity in noisy chaotic models, Int. J. Bifurcation Chaos, 15 (2005), 3391-3394. doi: 10.1142/S0218127405013964.

[26]

C. Kyrtsou, W. Labys and M. Terraza, Terraza, Noisy chaotic dynamics in commodity markets, Emp. Econ., 29 (2004), 489-502. doi: 10.1007/s00181-003-0180-6.

[27]

C. Kyrtsou and M. Terraza, Is it possible to study chaotic and ARCH behaviour jointly? Application of a noisy Mackey-Glass equation with heteroskedastic errors to the Paris stock exchange returns series, Computational Economics, 21 (2003), 257-276. doi: 10.1023/A:1023939610962.

[28]

P. S. Landa and M. G. Rosenblum, Modefied Mackey-Glass model of respiration control, Physical Review E, 52 (1995), 36-39. doi: 10.1103/PhysRevE.52.R36.

[29]

J. Losson, M. C. Mackey and A. Longtin, Solution multistability in first order nonlinear differential delay equations, Chaos, 3 (1993), 167-176. doi: 10.1063/1.165982.

[30]

M. C. Mackey, M. Santill'an and N. Yildirim, Modeling operon dynamics: The trytophan and lactose operation as paradigms, C. R. Biologies, 327 (2004), 211-224. doi: 10.1016/j.crvi.2003.11.009.

[31]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control system, Science, 197 (1977), 287-289.

[32]

A. E. Matouk and H. N. Agiza, Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor, J. Math. Anal. Appl., 341 (2008), 259-269. doi: 10.1016/j.jmaa.2007.09.067.

[33]

A. Matsumoto, Controlling the Cournot-Nash chaos, J. Optim. Theory Appl., 128 (2006), 379-392. doi: 10.1007/s10957-006-9021-z.

[34]

R. K. Miller and A. N. Michael, Ordinary Differential Equations, Academic Press, New York, 1982.

[35]

I. Ncube, Stability switching and Hopf bifurcation in a multiple-delayed neural network with distributed delay, J. Math. Anal. Appl., 407 (2013), 141-146. doi: 10.1016/j.jmaa.2013.05.021.

[36]

D. T. Nguyen, Mackey-Glass equation driven by fractional Brownian motion, Physica A, 391 (2012), 5465-5472. doi: 10.1016/j.physa.2012.06.013.

[37]

B. Niu and W. Jiang, Nonresonant Hopf-Hopf bifurcation and a chaotic attractor in neutral functional differential equations, J. Math. Anal. Appl., 398 (2013), 362-371. doi: 10.1016/j.jmaa.2012.08.051.

[38]

G. Qi, Z. Chen and Z. Yuan, Adaptive high order differential feedback control for affine nonlinear system, Chaos, Solitons & Fractals, 37 (2008), 308-315. doi: 10.1016/j.chaos.2006.09.027.

[39]

H. Xu, G. Wang and S. Chen, Controlling chaos by a modified straight-line stabilization method, The European Physical Journal B, 22 (2001), 65-69. doi: 10.1007/PL00011136.

show all references

References:
[1]

I. Bashkirtseva and L. Ryashko, Stochastic sensitivity analysis of noise-induced intermittency and transition to chaos in one-dimensional discrete-time systems, Physica A, 392 (2013), 295-306. doi: 10.1016/j.physa.2012.09.001.

[2]

J. Brockwell and A. Davis, Time Series: Theory and Methods, $2^{nd}$ edition, Springer-Verlag, New York, 2006. doi: 10.1007/978-1-4419-0320-4.

[3]

J. H. E. Cartwright, Nonlinear stiffness, Lyapunov exponents, and attractor dimension, Phys. Lett. A, 264 (1999), 298-302. doi: 10.1016/S0375-9601(99)00793-8.

[4]

S. Chatterjee and M. Yilmaz, Chaos, fractals and statistics, Statist. Sci., 7 (1992), 49-68. Available from: http://www.jstor.org/discover/10.2307/2245990?uid=2&uid=4&sid=21104445119883. doi: 10.1214/ss/1177011443.

[5]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesely Reading, 1989.

[6]

J. Du, T. Huang and Z. Sheng, Analysis of decision-making in economic chaos control, Nonlinear Anal. Real World Appl., 10 (2009), 2493-2501. doi: 10.1016/j.nonrwa.2008.05.007.

[7]

S. N. Elaydi, An Introduction to Difference Equations, $3^{rd}$ edition, Springer-Verlag, New York, 2005.

[8]

A. Elhassanein, Complex dynamics of logistic self-exciting threshold autoregressive model, J. Comput. Theor. Nanosci., accepted.

[9]

A. Elhassanein, On the control of forced process feedback nonlinear autoregressive model, J. Comput. Theor. Nanosci., accepted.

[10]

A. Elhassanein, Complex dynamics of a stochastic discrete modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, Computational Ecology and Software, 4 (2014), 116-128. Available from: http://www.iaees.org/publications/journals/ces/articles/2014-4(2)/dynamics-of-a-stochastic-discrete-modified-Leslie-Gower-model.pdf.

[11]

A. Elhassanein, On the theory of continuous time series, Indian J. Pure Appl. Math., 45 (2014), 297-310. doi: 10.1007/s13226-014-0064-9.

[12]

A. Elhassanein, Nonparametric spectral analysis on disjoint segments of observations, JAMSI, 7 (2011), 81-96. Available from: http://jamsi.fpv.ucm.sk/docs/v07n01_05_2011/v07_n01_07_ELHASSANEIN.pdf.

[13]

W. A. Fuller, Introduction to Statistical Time Series, John Wiley & Sones, 1996.

[14]

J. Gao, J. Hu, W. Tung and Y. Zheng, Multiscale analysis of economic time series by scale-dependent Lyapunov exponent, Quantitative Finance, 13 (2013), 265-274. doi: 10.1080/14697688.2011.580774.

[15]

M. A. Ghazal and A. Elhassanein, Dynamics of EXPAR models for high frequency data, Int. J. Appl. Math. Stat., 14 (2009), 88-96. Available from: http://www.ceser.in/ceserp/index.php/ijamas/article/view/165.

[16]

M. A. Ghazal and A. Elhassanein, Spectral analysis of time series in joint segments of observations, J. Appl. Math. & Informatics, 26 (2008), 933-943. Available from: http://www.kcam.biz/contents/table_contents_view.php?Len=&idx=818.

[17]

M. A. Ghazal and A. Elhassanein, Nonparametric spectral analysis of continuous time Series, Bull. Stat. Econ., 1 (2007), 41-52. Available from: http://www.ceserp.com/cp-jour/index.php?journal=bse&page=article&op=view&path[]=483.

[18]

M. A. Ghazal and A. Elhassanein, Periodogram analysis with missing observations, J. Appl. Math. Comput., 22 (2006), 209-222. doi: 10.1007/BF02896472.

[19]

D. Gulick, Encounters with Chaos, McGraw Hill, New York, 1992.

[20]

L. Junges and J. A. C. Gallas, Intricate routes to chaos in the Mackey-Glass delayed feed back system, Physics letters A, 376 (2012), 2109-2116. doi: 10.1016/j.physleta.2012.05.022.

[21]

J. L. Kaplan and Y. A. Yorke, A regime observed in a fluid flow model of Lorenz, Comm. Math. Phys., 67 (1979), 93-108. Available from: http://projecteuclid.org/euclid.cmp/1103905158. doi: 10.1007/BF01221359.

[22]

M. Karanasos and C. Kyrtsou, Analyzing the link between stock volatility and volume by a Mackey-Glass GARCH-type model: The case of Korea, Quantitative and Qualitative Analysis in Social Sciences, 5 (2011), 49-69. Available from: http://www.qass.org.uk/2011/paper4.pdf.

[23]

C. Kyrtsou and M. Terraza, Seasonal Mackey-Glass-GARCH process and short-term dynamics, Emp. Econ., 38 (2010), 325-345. doi: 10.1007/s00181-009-0268-8.

[24]

C. Kyrtsou, Re-examining the sources of heteroskedasticity: The paradigm of noisy chaotic models, Physica A, 387 (2008), 6785-6789. doi: 10.1016/j.physa.2008.09.008.

[25]

C. Kyrtsou, Evidence for neglected linearity in noisy chaotic models, Int. J. Bifurcation Chaos, 15 (2005), 3391-3394. doi: 10.1142/S0218127405013964.

[26]

C. Kyrtsou, W. Labys and M. Terraza, Terraza, Noisy chaotic dynamics in commodity markets, Emp. Econ., 29 (2004), 489-502. doi: 10.1007/s00181-003-0180-6.

[27]

C. Kyrtsou and M. Terraza, Is it possible to study chaotic and ARCH behaviour jointly? Application of a noisy Mackey-Glass equation with heteroskedastic errors to the Paris stock exchange returns series, Computational Economics, 21 (2003), 257-276. doi: 10.1023/A:1023939610962.

[28]

P. S. Landa and M. G. Rosenblum, Modefied Mackey-Glass model of respiration control, Physical Review E, 52 (1995), 36-39. doi: 10.1103/PhysRevE.52.R36.

[29]

J. Losson, M. C. Mackey and A. Longtin, Solution multistability in first order nonlinear differential delay equations, Chaos, 3 (1993), 167-176. doi: 10.1063/1.165982.

[30]

M. C. Mackey, M. Santill'an and N. Yildirim, Modeling operon dynamics: The trytophan and lactose operation as paradigms, C. R. Biologies, 327 (2004), 211-224. doi: 10.1016/j.crvi.2003.11.009.

[31]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control system, Science, 197 (1977), 287-289.

[32]

A. E. Matouk and H. N. Agiza, Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor, J. Math. Anal. Appl., 341 (2008), 259-269. doi: 10.1016/j.jmaa.2007.09.067.

[33]

A. Matsumoto, Controlling the Cournot-Nash chaos, J. Optim. Theory Appl., 128 (2006), 379-392. doi: 10.1007/s10957-006-9021-z.

[34]

R. K. Miller and A. N. Michael, Ordinary Differential Equations, Academic Press, New York, 1982.

[35]

I. Ncube, Stability switching and Hopf bifurcation in a multiple-delayed neural network with distributed delay, J. Math. Anal. Appl., 407 (2013), 141-146. doi: 10.1016/j.jmaa.2013.05.021.

[36]

D. T. Nguyen, Mackey-Glass equation driven by fractional Brownian motion, Physica A, 391 (2012), 5465-5472. doi: 10.1016/j.physa.2012.06.013.

[37]

B. Niu and W. Jiang, Nonresonant Hopf-Hopf bifurcation and a chaotic attractor in neutral functional differential equations, J. Math. Anal. Appl., 398 (2013), 362-371. doi: 10.1016/j.jmaa.2012.08.051.

[38]

G. Qi, Z. Chen and Z. Yuan, Adaptive high order differential feedback control for affine nonlinear system, Chaos, Solitons & Fractals, 37 (2008), 308-315. doi: 10.1016/j.chaos.2006.09.027.

[39]

H. Xu, G. Wang and S. Chen, Controlling chaos by a modified straight-line stabilization method, The European Physical Journal B, 22 (2001), 65-69. doi: 10.1007/PL00011136.

[1]

Valentin Duruisseaux, Antony R. Humphries. Bistability, bifurcations and chaos in the Mackey-Glass equation. Journal of Computational Dynamics, 2022, 9 (3) : 421-450. doi: 10.3934/jcd.2022009

[2]

Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861

[3]

Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573

[4]

Tarik Mohammed Touaoula. Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models). Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4391-4419. doi: 10.3934/dcds.2018191

[5]

Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373

[6]

Y. Charles Li. Existence of chaos in weakly quasilinear systems. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1331-1344. doi: 10.3934/cpaa.2011.10.1331

[7]

Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210

[8]

Carles Simó. Measuring the total amount of chaos in some Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5135-5164. doi: 10.3934/dcds.2014.34.5135

[9]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[10]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[11]

Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435

[12]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[13]

Javier Fernández, Sebastián Elías Graiff Zurita, Sergio Grillo. Erratum for "Error analysis of forced discrete mechanical systems". Journal of Geometric Mechanics, 2021, 13 (4) : 679-679. doi: 10.3934/jgm.2021030

[14]

Javier Fernández, Sebastián Elías Graiff Zurita, Sergio Grillo. Error analysis of forced discrete mechanical systems. Journal of Geometric Mechanics, 2021, 13 (4) : 533-606. doi: 10.3934/jgm.2021017

[15]

JinHyon Kim, HyonHui Ju, WiJong An. Inheritance of $ {\mathscr F}- $chaos and $ {\mathscr F}- $sensitivities under an iteration for non-autonomous discrete systems. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022053

[16]

Rubén Capeáns, Juan Sabuco, Miguel A. F. Sanjuán. Partial control of chaos: How to avoid undesirable behaviors with small controls in presence of noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3237-3274. doi: 10.3934/dcdsb.2018241

[17]

John E. Franke, Abdul-Aziz Yakubu. Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences & Engineering, 2011, 8 (2) : 385-408. doi: 10.3934/mbe.2011.8.385

[18]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[19]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[20]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (126)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]