Citation: |
[1] |
R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts, Philos. T. R. Soc. B, 291 (1981), 451-524.doi: 10.1098/rstb.1981.0005. |
[2] |
H. T. Banks, D. M. Bortz and S. E. Holte, Incorporation of variability into the modeling of viral delays in HIV infection dynamics, Math. Biosci., 183 (2003), 63-91.doi: 10.1016/S0025-5564(02)00218-3. |
[3] |
A. L. Cunningham, H. Donaghy, A. N. Harman, M. Kim and S. G. Turville, Manipulation of dendritic cell function by viruses, Curr. Opin. Microbiol., 13 (2010), 524-529.doi: 10.1016/j.mib.2010.06.002. |
[4] |
M. Carbonari, M. Cibati, A. M. Pesce, D. Sbarigia, P. Grossi, G. D'Offizi, G. Luzi and M. Fiorilli, Frequency of provirus-bearing CD4$^+$ cells in HIV type 1 infection correlates with extent of in vitro apoptosis of CD8$^+$ but not of CD4$^+$ cells, AIDS Res. Hum. Retrov., 11 (1995), 789-794. |
[5] |
L. Conti, G. Rainaldi, P. Matarrese, B. Varano, R. Rivabene, S. Columba, A. Sato, F. Belardelli, W. Malorni and S. Gessani, The HIV-1 vpr protein acts as a negative regulator of apoptosis in a human lymphoblastoid T cell line: Possible implications for the pathogenesis of AIDS, J. Exp. Med., 187 (1998), 403-413.doi: 10.1084/jem.187.3.403. |
[6] |
R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425-444.doi: 10.1007/s00285-002-0191-5. |
[7] |
W. Cheng, W. Ma and S. Guo, A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis, Commun. Pur. Appl. Anal., in press. |
[8] |
O. Diekmann, S. A. van Oils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4206-2. |
[9] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324. |
[10] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[11] |
J. Embretson, M. Zupancic, J. L. Ribas, A. Burke, P. Racz, K. T.-Racz and A. T. Haase, Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS, Nature, 362 (1993), 359-362.doi: 10.1038/362359a0. |
[12] |
B. Ensoli, G. Barillari, S. Z. Salahuddin, R. C. Gallo and F. W.-Staal, Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients, Nature, 345 (1990), 84-86.doi: 10.1038/345084a0. |
[13] |
Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Anal.-Real, 13 (2012), 2120-2133.doi: 10.1016/j.nonrwa.2012.01.007. |
[14] |
A. M. Elaiw and N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, Int. J. Biomath., 8 (2015), 1550058, 53 pp.doi: 10.1142/S1793524515500588. |
[15] |
H. I. Freedman and S. Ruan, Uniform persistence in functional differential equations, J. Differ. Equations, 115 (1995), 173-192.doi: 10.1006/jdeq.1995.1011. |
[16] |
Z. Feng and L. Rong, The influence of anti-viral drug therapy on the evolution of HIV-1 pathogens, DIMACS Series in Discrete Math. Theor., 71 (2006), 161-179. |
[17] |
R. Fan, Y. Dong, G. Huang and Y. Takeuchi, Apoptosis in virus infection dynamics models, J. Biol. Dyn., 8 (2014), 20-41.doi: 10.1080/17513758.2014.895433. |
[18] |
H. Garg, J. Mohl and A. Joshi, HIV-1 induced bystander apoptosis, Viruses, 4 (2012), 3020-3043.doi: 10.3390/v4113020. |
[19] |
M.-L. Gougeon, H. Lecoeur, A. Dulioust, M.-G. Enouf, M. Crouvoiser, C. Goujard, T. Debord and L. Montagnier, Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression, J. Immunol., 156 (1996), 3509-3520. |
[20] |
S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763.doi: 10.1137/0134064. |
[21] |
M. Heinkelein, S. Sopper and C. Jassoy, Contact of human immunodeficiency virus type 1-infected and uninfected CD4$^+$ T lymphocytes is highly cytolytic for both cells, J. Virol., 69 (1995), 6925-6931. |
[22] |
A. V. M. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, P. Natl. Acad. Sci. USA, 93 (1996), 7247-7251.doi: 10.1073/pnas.93.14.7247. |
[23] |
G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 22 (2009), 1690-1693.doi: 10.1016/j.aml.2009.06.004. |
[24] |
G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708.doi: 10.1137/090780821. |
[25] |
G. Huang, H. Yokoi, Y. Takeuchi, T. Kajiwara and T. Sasaki, Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics, Jpn. J. Ind. Appl. Math., 28 (2011), 383-411.doi: 10.1007/s13160-011-0045-x. |
[26] |
M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dyn. Differ. Equ., 13 (2001), 107-131.doi: 10.1023/A:1009044515567. |
[27] |
J. K. Hale, P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.doi: 10.1137/0520025. |
[28] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-4342-7. |
[29] |
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Inc., Boston, 1993. |
[30] |
A. Korobeinikov, Global properties of basic virus dynamics models, B. Math. Biol., 66 (2004), 879-883.doi: 10.1016/j.bulm.2004.02.001. |
[31] |
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, B. Math. Biol., 69 (2007), 1871-1886.doi: 10.1007/s11538-007-9196-y. |
[32] |
M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, B. Math. Biol., 72 (2010), 1492-1505.doi: 10.1007/s11538-010-9503-x. |
[33] |
C. J. Li, D. J. Friedman, C. Wang, V. Metelev and A. B. Pardee, Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein, Science, 268 (1995), 429-431.doi: 10.1126/science.7716549. |
[34] |
X. Li and S. Fu, Global stability of the virus dynamics model with intracellular delay and Crowley-Martin functional response, Math. Method. Appl. Sci., 37 (2014), 1405-1411.doi: 10.1002/mma.2895. |
[35] |
X. Lai and X. Zou, Modeling HIV-1 Virus Dynamics with Both Virus-to-Cell Infection and Cell-to-Cell Transmission, SIAM J. Appl. Math., 74 (2014), 898-917.doi: 10.1137/130930145. |
[36] |
X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., 426 (2015), 563-584.doi: 10.1016/j.jmaa.2014.10.086. |
[37] |
C. C. McCluskey, Global stability of an SIR epidemic model with delay and general nonlinear incidence, Math. Biosci. Eng., 7 (2010), 837-850.doi: 10.3934/mbe.2010.7.837. |
[38] |
B. Nardelli, C. J. Gonzalez, M. Schechter and F. T. Valentine, CD4$^+$ blood lymphocytes are rapidly killed in vitro by contact with autologous human immunodeficiency virus-infected cells, P. Natl. Acad. Sci. USA, 92 (1995), 7312-7316.doi: 10.1073/pnas.92.16.7312. |
[39] |
M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000. |
[40] |
M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.doi: 10.1126/science.272.5258.74. |
[41] |
P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201-215.doi: 10.1016/S0025-5564(99)00055-3. |
[42] |
P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73-94.doi: 10.1016/S0025-5564(02)00099-8. |
[43] |
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44.doi: 10.1137/S0036144598335107. |
[44] |
L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math., 67 (2007), 731-756.doi: 10.1137/060663945. |
[45] |
N. Selliah and T. H. Finkel, Biochemical mechanisms of HIV induced T cell apoptosis, Cell Death Differ., 8 (2001), 127-136.doi: 10.1038/sj.cdd.4400822. |
[46] |
H. Shu, L. Wang and J. Watmough, Global Stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302.doi: 10.1137/120896463. |
[47] |
H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal.-Theor., 47 (2001), 6169-6179.doi: 10.1016/S0362-546X(01)00678-2. |
[48] |
H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435.doi: 10.1137/0524026. |
[49] |
J. Wu and X.-Q. Zhao, Permanence and convergence in multi-species competition systems with delay, P. Am. Math. Soc., 126 (1998), 1709-1714.doi: 10.1090/S0002-9939-98-04522-5. |
[50] |
W. Wang, Global behavior of an SEIRS epidemic model with time delays, Appl. Math. Lett., 15 (2002), 423-428.doi: 10.1016/S0893-9659(01)00153-7. |
[51] |
X. Wang, S. Liu and X. Song, Dynamics of a non-autonomous HIV-1 infection model with delays, Int. J. Biomath., 6 (2013), 1350030, 26pp.doi: 10.1142/S1793524513500307. |
[52] |
R. A. Weiss, How does HIV cause AIDS?, Science, 260 (1993), 1273-1279.doi: 10.1126/science.8493571. |
[53] |
R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl., 375 (2011), 75-81.doi: 10.1016/j.jmaa.2010.08.055. |
[54] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.doi: 10.1007/978-0-387-21761-1. |