-
Previous Article
Analysis of a non-autonomous mutualism model driven by Levy jumps
- DCDS-B Home
- This Issue
-
Next Article
The 20-60-20 rule
Anisotropy in wavelet-based phase field models
1. | Technische Universität Berlin, Institute of Mathematics, Straße des 17. Juni 136, 10623 Berlin, Germany |
2. | Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom |
3. | Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom |
4. | Weierstrass Institute, Mohrenstraße 39, 10117 Berlin, Germany |
References:
[1] |
J. W. Barrett, H. Garcke and R. Nürnberg, Stable phase field approximations of anisotropic solidification,, IMA J. Numer. Anal., 34 (2014), 1289.
doi: 10.1093/imanum/drt044. |
[2] |
A. Braides, Gamma-Convergence for Beginners,, Oxford University Press, (2002).
doi: 10.1093/acprof:oso/9780198507840.001.0001. |
[3] |
E. Burman and J. Rappaz, Existence of solutions to an anisotropic phase-field model,, Math. Meth. Appl. Sci., 26 (2003), 1137.
doi: 10.1002/mma.405. |
[4] |
W. K. Burton, N. Cabrera and F. C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces,, Phil. Trans. R. Soc. Lond. A, 243 (1951), 299.
doi: 10.1098/rsta.1951.0006. |
[5] |
G. Caginalp, Penrose-Fife modification of solidification equations has no freezing or melting,, Appl. Math. Lett., 5 (1992), 93.
doi: 10.1016/0893-9659(92)90120-X. |
[6] |
C. Cattani, Harmonic wavelets towards the solution of nonlinear PDE,, Comp. Math. Appl., 50 (2005), 1191.
doi: 10.1016/j.camwa.2005.07.001. |
[7] |
W. Dahmen, Wavelet and multiscale methods for operator equations,, Acta Num., 6 (1997), 55.
doi: 10.1017/S0962492900002713. |
[8] |
I. Daubechies, Ten Lectures on Wavelets,, SIAM, (1992).
doi: 10.1137/1.9781611970104. |
[9] |
J. A. Dobrosotskaya and A. L. Bertozzi, A wavelet-laplace variational technique for image deconvolution and inpainting,, IEEE Trans. Imag. Proc., 17 (2008), 657.
doi: 10.1109/TIP.2008.919367. |
[10] |
J. A. Dobrosotskaya and A. L. Bertozzi, Wavelet analogue of the Ginzburg-Landau energy and its Gamma-convergence,, Interf. Free Boundaries, 12 (2010), 497.
doi: 10.4171/IFB/243. |
[11] |
J. A. Dobrosotskaya and A. L. Bertozzi, Analysis of the wavelet Ginzburg-Landau energy in image applications with edges,, SIAM J. Imaging Sci., 6 (2013), 698.
doi: 10.1137/100812859. |
[12] |
M. E. Glicksman, Principles of Solidification,, Springer, (2011).
doi: 10.1007/978-1-4419-7344-3. |
[13] |
C. Herring, Some theorems on the free energies of crystal surfaces,, Phys. Rev., 82 (1951), 87.
doi: 10.1103/PhysRev.82.87. |
[14] |
M. Holmström, Solving hyperbolic PDEs using interpolating wavelets,, SIAM J. Sci. Comput., 21 (1999), 405.
doi: 10.1137/S1064827597316278. |
[15] |
M. Holmström and J. Waldén, Adaptive wavelet methods for hyperbolic PDEs,, J Sci. Comp., 13 (1998), 19.
doi: 10.1023/A:1023252610346. |
[16] |
L. Jameson, A wavelet-optimized, very high order adaptive grid and order numerical method,, SIAM J. Sci. Comput., 19 (1998), 1980.
doi: 10.1137/S1064827596301534. |
[17] |
A. Karma and W.-J. Rappel, Numerical simulation of three-dimensional dendritic growth,, Phys. Rev. Lett., 77 (1996).
doi: 10.1103/PhysRevLett.77.4050. |
[18] |
R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth,, Physica D, 63 (1993), 410.
doi: 10.1016/0167-2789(93)90120-P. |
[19] |
B. Li, J. Lowengrub, A. Rätz and A. Voigt, Geometric evolution laws for thin crystalline films: Modeling and numerics,, Commun. Comput. Phys., 6 (2009), 433.
|
[20] |
S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way,, Academic Press, (2009).
|
[21] |
G. B. McFadden, Phase-field models of solidification,, in Recent Advances in Numerical Methods for Partial Differential Equations and Applications, 306 (2002), 107.
doi: 10.1090/conm/306/05251. |
[22] |
G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell and R. F. Sekerka, Phase-field models for anisotropic interfaces,, Phys. Rev. E, 48 (1993), 2016.
doi: 10.1103/PhysRevE.48.2016. |
[23] |
A. Miranville, Some mathematical models in phase transitions,, DCDS-S, 7 (2014), 271.
doi: 10.3934/dcdss.2014.7.271. |
[24] |
L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 123.
doi: 10.1007/BF00251230. |
[25] |
O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Physica D, 43 (1990), 44.
doi: 10.1016/0167-2789(90)90015-H. |
[26] |
O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a ''thermodynamically consistent'' phase field model,, Physica D, 69 (1993), 107.
doi: 10.1016/0167-2789(93)90183-2. |
[27] |
K. Schneider and O. V. Vasilyev, Wavelet methods in computational fluid dynamics,, Ann. Rev. Fluid Mech., 42 (2010), 473.
doi: 10.1146/annurev-fluid-121108-145637. |
[28] |
I. Steinbach, Phase-field models in materials science,, Mod. Sim. Mater. Sci. Eng., 17 (2009).
doi: 10.1088/0965-0393/17/7/073001. |
[29] |
O. V. Vasilyev and S. Paolucci, A fast adaptive wavelet collocation algorithm for multidimensional PDEs,, J. Comp. Phys., 138 (1997), 16.
doi: 10.1006/jcph.1997.5814. |
[30] |
O. V. Vasilyev, S. Paolucci and M. Sen, A multilevel wavelet collocation method for solving partial differential equations in a finite domain,, J. Comp. Phys., 120 (1995), 33.
doi: 10.1006/jcph.1995.1147. |
[31] |
S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun and G. B. McFadden, Thermodynamically-consistent phase-field models for solidification,, Physica D, 69 (1993), 189.
doi: 10.1016/0167-2789(93)90189-8. |
[32] |
A. A. Wheeler, B. T. Murray and R. J. Schaefer, Computation of dendrites using a phase field model,, Physica D, 66 (1993), 243.
doi: 10.1016/0167-2789(93)90242-S. |
[33] |
G. Wulff, Zur frage der geschwindigkeit des wachstums und der auflösung der krystallflächen,, Zeitschrift f. Krystall. Mineral., 34 (1901), 449. Google Scholar |
[34] |
S.-M. Zheng, Nonlinear Evolution Equations,, Pitman series Monographs and Survey in Pure and Applied Mathematics 133, (2004).
doi: 10.1201/9780203492222. |
show all references
References:
[1] |
J. W. Barrett, H. Garcke and R. Nürnberg, Stable phase field approximations of anisotropic solidification,, IMA J. Numer. Anal., 34 (2014), 1289.
doi: 10.1093/imanum/drt044. |
[2] |
A. Braides, Gamma-Convergence for Beginners,, Oxford University Press, (2002).
doi: 10.1093/acprof:oso/9780198507840.001.0001. |
[3] |
E. Burman and J. Rappaz, Existence of solutions to an anisotropic phase-field model,, Math. Meth. Appl. Sci., 26 (2003), 1137.
doi: 10.1002/mma.405. |
[4] |
W. K. Burton, N. Cabrera and F. C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces,, Phil. Trans. R. Soc. Lond. A, 243 (1951), 299.
doi: 10.1098/rsta.1951.0006. |
[5] |
G. Caginalp, Penrose-Fife modification of solidification equations has no freezing or melting,, Appl. Math. Lett., 5 (1992), 93.
doi: 10.1016/0893-9659(92)90120-X. |
[6] |
C. Cattani, Harmonic wavelets towards the solution of nonlinear PDE,, Comp. Math. Appl., 50 (2005), 1191.
doi: 10.1016/j.camwa.2005.07.001. |
[7] |
W. Dahmen, Wavelet and multiscale methods for operator equations,, Acta Num., 6 (1997), 55.
doi: 10.1017/S0962492900002713. |
[8] |
I. Daubechies, Ten Lectures on Wavelets,, SIAM, (1992).
doi: 10.1137/1.9781611970104. |
[9] |
J. A. Dobrosotskaya and A. L. Bertozzi, A wavelet-laplace variational technique for image deconvolution and inpainting,, IEEE Trans. Imag. Proc., 17 (2008), 657.
doi: 10.1109/TIP.2008.919367. |
[10] |
J. A. Dobrosotskaya and A. L. Bertozzi, Wavelet analogue of the Ginzburg-Landau energy and its Gamma-convergence,, Interf. Free Boundaries, 12 (2010), 497.
doi: 10.4171/IFB/243. |
[11] |
J. A. Dobrosotskaya and A. L. Bertozzi, Analysis of the wavelet Ginzburg-Landau energy in image applications with edges,, SIAM J. Imaging Sci., 6 (2013), 698.
doi: 10.1137/100812859. |
[12] |
M. E. Glicksman, Principles of Solidification,, Springer, (2011).
doi: 10.1007/978-1-4419-7344-3. |
[13] |
C. Herring, Some theorems on the free energies of crystal surfaces,, Phys. Rev., 82 (1951), 87.
doi: 10.1103/PhysRev.82.87. |
[14] |
M. Holmström, Solving hyperbolic PDEs using interpolating wavelets,, SIAM J. Sci. Comput., 21 (1999), 405.
doi: 10.1137/S1064827597316278. |
[15] |
M. Holmström and J. Waldén, Adaptive wavelet methods for hyperbolic PDEs,, J Sci. Comp., 13 (1998), 19.
doi: 10.1023/A:1023252610346. |
[16] |
L. Jameson, A wavelet-optimized, very high order adaptive grid and order numerical method,, SIAM J. Sci. Comput., 19 (1998), 1980.
doi: 10.1137/S1064827596301534. |
[17] |
A. Karma and W.-J. Rappel, Numerical simulation of three-dimensional dendritic growth,, Phys. Rev. Lett., 77 (1996).
doi: 10.1103/PhysRevLett.77.4050. |
[18] |
R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth,, Physica D, 63 (1993), 410.
doi: 10.1016/0167-2789(93)90120-P. |
[19] |
B. Li, J. Lowengrub, A. Rätz and A. Voigt, Geometric evolution laws for thin crystalline films: Modeling and numerics,, Commun. Comput. Phys., 6 (2009), 433.
|
[20] |
S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way,, Academic Press, (2009).
|
[21] |
G. B. McFadden, Phase-field models of solidification,, in Recent Advances in Numerical Methods for Partial Differential Equations and Applications, 306 (2002), 107.
doi: 10.1090/conm/306/05251. |
[22] |
G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell and R. F. Sekerka, Phase-field models for anisotropic interfaces,, Phys. Rev. E, 48 (1993), 2016.
doi: 10.1103/PhysRevE.48.2016. |
[23] |
A. Miranville, Some mathematical models in phase transitions,, DCDS-S, 7 (2014), 271.
doi: 10.3934/dcdss.2014.7.271. |
[24] |
L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 123.
doi: 10.1007/BF00251230. |
[25] |
O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Physica D, 43 (1990), 44.
doi: 10.1016/0167-2789(90)90015-H. |
[26] |
O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a ''thermodynamically consistent'' phase field model,, Physica D, 69 (1993), 107.
doi: 10.1016/0167-2789(93)90183-2. |
[27] |
K. Schneider and O. V. Vasilyev, Wavelet methods in computational fluid dynamics,, Ann. Rev. Fluid Mech., 42 (2010), 473.
doi: 10.1146/annurev-fluid-121108-145637. |
[28] |
I. Steinbach, Phase-field models in materials science,, Mod. Sim. Mater. Sci. Eng., 17 (2009).
doi: 10.1088/0965-0393/17/7/073001. |
[29] |
O. V. Vasilyev and S. Paolucci, A fast adaptive wavelet collocation algorithm for multidimensional PDEs,, J. Comp. Phys., 138 (1997), 16.
doi: 10.1006/jcph.1997.5814. |
[30] |
O. V. Vasilyev, S. Paolucci and M. Sen, A multilevel wavelet collocation method for solving partial differential equations in a finite domain,, J. Comp. Phys., 120 (1995), 33.
doi: 10.1006/jcph.1995.1147. |
[31] |
S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun and G. B. McFadden, Thermodynamically-consistent phase-field models for solidification,, Physica D, 69 (1993), 189.
doi: 10.1016/0167-2789(93)90189-8. |
[32] |
A. A. Wheeler, B. T. Murray and R. J. Schaefer, Computation of dendrites using a phase field model,, Physica D, 66 (1993), 243.
doi: 10.1016/0167-2789(93)90242-S. |
[33] |
G. Wulff, Zur frage der geschwindigkeit des wachstums und der auflösung der krystallflächen,, Zeitschrift f. Krystall. Mineral., 34 (1901), 449. Google Scholar |
[34] |
S.-M. Zheng, Nonlinear Evolution Equations,, Pitman series Monographs and Survey in Pure and Applied Mathematics 133, (2004).
doi: 10.1201/9780203492222. |
[1] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[2] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[3] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[4] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[5] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[6] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[7] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[8] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[9] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[10] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[11] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[12] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[13] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[14] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[15] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[16] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[17] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[18] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[19] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[20] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]