Citation: |
[1] |
X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778-800.doi: 10.1137/S0036141099351693. |
[2] |
J. Crank, Free and Moving Boundary Problem, Clarendon Press, Oxford, 1984. |
[3] |
Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.doi: 10.1088/0951-7715/20/8/004. |
[4] |
P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954.doi: 10.1016/j.jde.2013.12.008. |
[5] |
C. X. Lei, Z. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166.doi: 10.1016/j.jde.2014.03.015. |
[6] |
E. N. Dancer and P. Hess, The symmetry of positive solutions of periodic-parabolic problems, J. Comput. Appl. Math., 52 (1994), 81-89.doi: 10.1016/0377-0427(94)90350-6. |
[7] |
Y. H. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions, J. Lond. Math. Soc., 64 (2001), 107-124.doi: 10.1017/S0024610701002289. |
[8] |
Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.doi: 10.1137/090771089. |
[9] |
Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II, J. Differential Equations, 250 (2011), 4336-4366.doi: 10.1016/j.jde.2011.02.011. |
[10] |
Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3105-3132.doi: 10.3934/dcdsb.2014.19.3105. |
[11] |
Y. H. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.doi: 10.1016/j.jfa.2013.07.016. |
[12] |
Y. H. Du and X. Liang, Pulsating semi-waves in periodic media and spreading speed determined by a free boundary model, Ann. Inst. H. Poincare Anal. NonLineaire, 32 (2015), 279-305.doi: 10.1016/j.anihpc.2013.11.004. |
[13] |
Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., (2014), in press, arXiv:1301.5373. |
[14] |
Y. H. Du, H. Matsuzawa and M. L. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.doi: 10.1137/130908063. |
[15] |
A. Friedman, Partial Differential Equations of Parabolic Type, Printice-Hall, Englewood Cliffs, N.J., 1964. |
[16] |
P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math., vol. 247, Longman Sci. Tech., Harlow, 1991. |
[17] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.doi: 10.3934/dcds.2008.21.1. |
[18] |
O. Ladyzenskaja, V. Solonnikov and N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, AMS, Providence, RI, 1967. |
[19] |
Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in Tutor. Math. Biosci. IV: Evol. Ecol. (eds. Avner Friedman), Springer, 1922 (2008), 171-205.doi: 10.1007/978-3-540-74331-6_5. |
[20] |
G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publ. Co., Inc., River Edge, NJ, 1996.doi: 10.1142/3302. |
[21] |
J. Wang and L. Zhang, Invasion by an inferior or superior competitor: A diffusive competition model with a free boundary in a heterogeneous environment, J. Math. Anal. Appl., 423 (2015), 377-398.doi: 10.1016/j.jmaa.2014.09.055. |
[22] |
J. S. Guo and C. H. Wu, On a free boundary problem for a two-species weak competition system, J. Dynam. Differential Equations, 24 (2012), 873-895.doi: 10.1007/s10884-012-9267-0. |
[23] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons Ltd, 2003.doi: 10.1002/0470871296. |
[24] |
R. Peng and D. Wei, The periodic-parabolic logistic equation on $\mathbbR^N$, Discrete Contin. Dyn. Syst., 32 (2012), 619-641. |
[25] |
R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.doi: 10.3934/dcds.2013.33.2007. |
[26] |
M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Jpn. J. Appl. Math., 2 (1985), 151-186.doi: 10.1007/BF03167042. |
[27] |
M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498. |
[28] |
M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction diffusion equations, Hiroshima Math. J., 17 (1987), 241-280. |
[29] |
Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492. |
[30] |
L. I. Rubinstein, The Stefan Problem, American Mathematical Society, Providence, RI, 1971. |
[31] |
M. X. Wang and J. F. Zhao, Free boundary problem for a Lotka-Volterra competition system, J. Dynam. Differential Equations, 26 (2014), 655-672.doi: 10.1007/s10884-014-9363-4. |
[32] |
M. X. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations, 256 (2014), 3365-3394.doi: 10.1016/j.jde.2014.02.013. |
[33] |
M. X. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252-1266.doi: 10.1016/j.jde.2014.10.022. |
[34] |
M. X. Wang and J. F. Zhao, A free boundary problem for a predator-prey model with double free boundaries, preprint, arXiv:1312.7751. |
[35] |
J. F. Zhao and M. X. Wang, A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment, Nonlinear Anal. Real World Appl., 16 (2014), 250-263.doi: 10.1016/j.nonrwa.2013.10.003. |
[36] |
G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.doi: 10.3934/nhm.2012.7.583. |
[37] |
W. Z. Gan and P. Zhou, A revisit to the diffusive logistic model with free boundary condition, Discrete. Contin. Dyn. Syst. Ser. B, in press. |