\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate

Abstract Related Papers Cited by
  • In this paper, a delayed viral infection model with nonlinear immune response and general incidence rate is discussed. We prove the existence and uniqueness of the equilibria. We study the effect of three kinds of time delays on the dynamics of the model. By using the Lyapunov functional and LaSalle invariance principle, we obtain the conditions of global stabilities of the infection-free equilibrium, the immune-exhausted equilibrium and the endemic equilibrium. It is shown that an increase of the viral-infection delay and the virus-production delay may stabilize the infection-free equilibrium, but the immune response delay can destabilize the equilibrium, leading to Hopf bifurcations. Numerical simulations are given to verify the analytical results. This can provide a possible interpretation for the viral oscillation observed in chronic hepatitis B virus (HBV) and human immunodeficiency virus (HIV) infected patients.
    Mathematics Subject Classification: Primary: 34K20, 34K25; Secondary: 92D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Bertoletti and M. K. Maini, Protection or damage: a dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection?, Curr. Opin. Microbiol., 3 (2000), 387-392.

    [2]

    R. J. De Boer and A. S. Perelson, Towards a general function describing T cell proliferation, J. Theor. Biol., 175 (1995), 567-576.

    [3]

    S. Bonhoeffer, R. M. May and G. M. Shaw, et al., Virus dynamics and drug therapy, P. Natl. Acad. Sci. USA., 94 (1997), 6971-6976.doi: 10.1073/pnas.94.13.6971.

    [4]

    A. A. Canabarro, I. M. Gléria and M. L. Lyra, Periodic solutions and chaos in a non-linear model for the delayed cellular immune response, Physica A, 342 (2004), 234-241.doi: 10.1016/j.physa.2004.04.083.

    [5]

    X. Chen, L. Q. Min and Y. Zheng, et al., Dynamics of acute hepatitis B virus infection in chimpanzees, Math. Comput. Simulat., 96 (2014), 157-170.doi: 10.1016/j.matcom.2013.05.003.

    [6]

    Y. K. Chun, J. Y. Kim and H. J. Woo, et al., No significant correlation exists between core promoter mutations, viral replication, and liver damage in chronic hepatitis B infection, Hepatology, 32 (2000), 1154-1162.

    [7]

    O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324.

    [8]

    P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease trensmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6.

    [9]

    S. Eikenberry, S. Hews and J. D. Nagy, et al., The dynamics of a delay model of HBV infection with logistic hepatocyte growth, Math. Biosci. Eng., 6 (2009), 283-299.doi: 10.3934/mbe.2009.6.283.

    [10]

    S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential model of hepatitis B virus, J. Biol. Dynam., 2 (2008), 140-153.doi: 10.1080/17513750701769873.

    [11]

    S. J. Hadziyannis, N. C. Tassopoulos and E. J. Heathcote, et al., Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B, New Engl. J. Med., 352 (2005), 2673-2681.doi: 10.1056/NEJMoa042957.

    [12]

    K. Hattaf, N. Yousfi and A. Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Anal-Real, 13 (2012), 1866-1872.doi: 10.1016/j.nonrwa.2011.12.015.

    [13]

    Z. X. Hu, J. J. Zhang and H. Wang, et al., Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Appl. Math. Model., 38 (2014), 524-534.doi: 10.1016/j.apm.2013.06.041.

    [14]

    G. Huang, W. B. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 24 (2011), 1199-1203.doi: 10.1016/j.aml.2011.02.007.

    [15]

    Y. Ji, L. Q. Min and Y. A. Ye, Global analysis of a viral infection model with application to HBV infection, J. Biol. Syst., 18 (2010), 325-337.doi: 10.1142/S0218339010003299.

    [16]

    Y. Ji, Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection, Math. Biosci. Eng., 12 (2015), 525-536.doi: 10.3934/mbe.2015.12.525.

    [17]

    M. Y. Li and H. Y. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD$4^+$ T cells with delayed CTL response, Nonlinear Anal-Real, 13 (2012), 1080-1092.doi: 10.1016/j.nonrwa.2011.02.026.

    [18]

    L. Q. Min, Y. M. Su and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection, Rocky Mt. J. Math., 38 (2008), 1573-1585.doi: 10.1216/RMJ-2008-38-5-1573.

    [19]

    Y. Nakata, Global dynamics of a viral infection model with a latent period and Beddington-DeAngelis response, Nonlinear Anal-Theor., 74 (2011), 2929-2940.doi: 10.1016/j.na.2010.12.030.

    [20]

    M. A. Nowak and C. R. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.doi: 10.1126/science.272.5258.74.

    [21]

    M. A. Nowak and R. M. May, Virus Dynamics, Oxford University Press, New York, 2000.

    [22]

    A. Penna, F. V. Chisari and A. Bertoletti, et al., Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the hepatitis B virus nucleocapsid antigen, J. Exp. Med., 174 (1991), 1565-1570.

    [23]

    X. Y. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007), 281-297.doi: 10.1016/j.jmaa.2006.06.064.

    [24]

    X. Y. Song, S. L. Wang and J. Dong, Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response, J. Math. Anal. Appl., 373 (2011), 345-355.doi: 10.1016/j.jmaa.2010.04.010.

    [25]

    X. Y. Song, X. Y. Zhou and X. Zhao, Properties of stability and Hopf bifurcaion for a HIV infection model with time delay, Appl. Math. Model., 34 (2010), 1511-1523.doi: 10.1016/j.apm.2009.09.006.

    [26]

    M. A. Stafford, L. Corey and Y. Z. Cao, et al., Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203 (2000), 285-301.doi: 10.1006/jtbi.2000.1076.

    [27]

    Y. N. Tian and X. N. Liu, Global dynamics of a virus dynamical model with general incidence rate and cure rate, Nonlinear Anal-Real, 16 (2014), 17-26.doi: 10.1016/j.nonrwa.2013.09.002.

    [28]

    Z. P. Wang and R. Xu, Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 964-978.doi: 10.1016/j.cnsns.2011.06.024.

    [29]

    Y. Zheng, L. Q. Min and Y. Ji, et al., Global stability of endemic equilibrium point of basic virus infection model with application to HBV infection, J. Syst. Sci. Complex., 23 (2010), 1221-1230.doi: 10.1007/s11424-010-8467-0.

    [30]

    X. Zhou and J. Cui, Global stability of the viral dynamics with Crowley-Martin functional response, B. Korean Math. Soc., 48 (2011), 555-574.doi: 10.4134/BKMS.2011.48.3.555.

    [31]

    H. Y. Zhu, Y. Luo and M. L. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL-response delay, Comput. Math. Appl., 62 (2011), 3091-3102.doi: 10.1016/j.camwa.2011.08.022.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return