\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application

Abstract Related Papers Cited by
  • In this paper, we investigate the global stability of discrete-time coupled systems with multi-diffusion (DCSMDs). By utilizing a multi-digraph theory, we construct a global Lyapunov function for DCSMDs. Consequently, some sufficient conditions are presented to ensure the stability of a general DCSMDs. Then the proposed theory is successfully applied to analyze the global stability for a discrete-time predator-prey model which is discretized by a nonstandard finite difference scheme. Finally, an example with numerical simulation is given to demonstrate the effectiveness of the obtained results.
    Mathematics Subject Classification: Primary: 39A30; Secondary: 37J25, 92B99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Wang, J. Zu, X. Liu, G. Huang and J. Zhang, Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate, J. Biol. Syst., 20 (2012), 235-258.doi: 10.1142/S021833901250009X.

    [2]

    H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. RWA, 13 (2012), 1581-1592.doi: 10.1016/j.nonrwa.2011.11.016.

    [3]

    C. Ji, D. Jiang, Q. Yang and N. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121-131.doi: 10.1016/j.automatica.2011.09.044.

    [4]

    H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 4391-4400.doi: 10.1016/j.amc.2011.10.015.

    [5]

    R. Sun and J. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 280-286.doi: 10.1016/j.amc.2011.05.056.

    [6]

    M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47.doi: 10.1016/j.jmaa.2009.09.017.

    [7]

    Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Anal. RWA, 14 (2013), 1693-1704.doi: 10.1016/j.nonrwa.2012.11.005.

    [8]

    J. Epperlein, S. Siegmund and P. Stehík, Evolutionary games on graphs and discrete dynamical systems, J. Difference Eq. Appl., 21 (2015), 72-95.doi: 10.1080/10236198.2014.988618.

    [9]

    M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248 (2010), 1-20.doi: 10.1016/j.jde.2009.09.003.

    [10]

    S. Elaydi, An Introduction to Difference Equations, 3rd ed, (Springer, New York, 2004).

    [11]

    G. Barlev, M. Girvan and E. Ott, Map model for synchronization of systems of many coupled oscillators, Chaos, 20 (2010), 023109.doi: 10.1063/1.3357983.

    [12]

    M. Lazar, W. P. M. H. Heemels and A. R. Teel, Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems, IEEE Trans. Autom. Control., 54 (2009), 2421-2425.doi: 10.1109/TAC.2009.2029297.

    [13]

    J. Q. Qiu, K. F. Lu, P. Shi and M. S. Mahmoud, Robust exponential stability for discrete-time interval BAM neural networks with delays and Markovian jump parameters, Int. J. Adapt. Control., 24 (2010), 760-785.doi: 10.1002/acs.1171.

    [14]

    M. S. Peng and X. Z. Yang, New stability criteria and bifurcation analysis for nonlinear discrete-time coupled loops with multiple delays, Chaos, 20 (2010), 013125, 11pp.doi: 10.1063/1.3339857.

    [15]

    S. V. Naghavi and A. A. Safavi, Novel synchronization of discrete-time chaotic systems using neural network observer, Chaos, 18 (2008), 033110, 9pp.doi: 10.1063/1.2959140.

    [16]

    J. D. Cao and J. Q. Lu, Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16 (2006), 013133, 6pp.doi: 10.1063/1.2178448.

    [17]

    H. Su, W. Li and K. Wang, Global stability of discrete-time coupled systems on networks and its applications, Chaos, 22 (2012), 033135, 11pp.doi: 10.1063/1.4748851.

    [18]

    C. Zhang, W. Li and K. Wang, Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks, IEEE Trans. Neural Netw. Learn. Syst., 26 (2014), 1698-1709.doi: 10.1109/TNNLS.2014.2352217.

    [19]

    F. M. Atay and $\ddot Q$. Karabacak, Stability of coupled map networks with delays, SIAM J. Appl. Dyn. Syst., 5 (2006), 508-527.doi: 10.1137/060652531.

    [20]

    H. Guo, M. L. Li and Z.Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802.doi: 10.1090/S0002-9939-08-09341-6.

    [21]

    C. Zhang, W. Li and K. Wang, Boundedness for network of stochastic coupled van der Pol oscillators with time-varying delayed coupling, Appl. Math. Model., 37 (2013), 5394-5402.doi: 10.1016/j.apm.2012.10.032.

    [22]

    C. Zhang, W. Li and K. Wang, A graph-theoretic approach to stability of neutral stochastic coupled oscillators network with time-varying delayed coupling, Math. Meth. Appl. Sci., 37 (2014), 1179-1190.doi: 10.1002/mma.2879.

    [23]

    W. Li, H. Su, D. Wei and K. Wang, Global stability of coupled nonlinear systems with Markovian switching, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2609-2616.doi: 10.1016/j.cnsns.2011.09.039.

    [24]

    C. Zhang, W. Li and K. Wang, Graph-theoretic approach to stability of multi-group models with dispersal, Discrete. Cont. Dyn-B., 20 (2015), 259-280.doi: 10.3934/dcdsb.2015.20.259.

    [25]

    D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.

    [26]

    R. E. Mickens, Nonstandard finite difference schemes for differential equations, J. Differ. Equ. Appl., 8 (2002), 823-847.doi: 10.1080/1023619021000000807.

    [27]

    S. M. Moghadas, M. E. Alexander and B. D. Corbett, A non-standard numerical scheme for a generalized Gause-type predator-prey model, Physica D., 188 (2004), 134-151.doi: 10.1016/S0167-2789(03)00285-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(205) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return