January  2016, 21(1): 253-269. doi: 10.3934/dcdsb.2016.21.253

Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application

1. 

Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209, China, China, China

Received  January 2015 Revised  July 2015 Published  November 2015

In this paper, we investigate the global stability of discrete-time coupled systems with multi-diffusion (DCSMDs). By utilizing a multi-digraph theory, we construct a global Lyapunov function for DCSMDs. Consequently, some sufficient conditions are presented to ensure the stability of a general DCSMDs. Then the proposed theory is successfully applied to analyze the global stability for a discrete-time predator-prey model which is discretized by a nonstandard finite difference scheme. Finally, an example with numerical simulation is given to demonstrate the effectiveness of the obtained results.
Citation: Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253
References:
[1]

J. Wang, J. Zu, X. Liu, G. Huang and J. Zhang, Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate, J. Biol. Syst., 20 (2012), 235-258. doi: 10.1142/S021833901250009X.

[2]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. RWA, 13 (2012), 1581-1592. doi: 10.1016/j.nonrwa.2011.11.016.

[3]

C. Ji, D. Jiang, Q. Yang and N. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121-131. doi: 10.1016/j.automatica.2011.09.044.

[4]

H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 4391-4400. doi: 10.1016/j.amc.2011.10.015.

[5]

R. Sun and J. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 280-286. doi: 10.1016/j.amc.2011.05.056.

[6]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47. doi: 10.1016/j.jmaa.2009.09.017.

[7]

Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Anal. RWA, 14 (2013), 1693-1704. doi: 10.1016/j.nonrwa.2012.11.005.

[8]

J. Epperlein, S. Siegmund and P. Stehík, Evolutionary games on graphs and discrete dynamical systems, J. Difference Eq. Appl., 21 (2015), 72-95. doi: 10.1080/10236198.2014.988618.

[9]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248 (2010), 1-20. doi: 10.1016/j.jde.2009.09.003.

[10]

S. Elaydi, An Introduction to Difference Equations, 3rd ed, (Springer, New York, 2004).

[11]

G. Barlev, M. Girvan and E. Ott, Map model for synchronization of systems of many coupled oscillators, Chaos, 20 (2010), 023109. doi: 10.1063/1.3357983.

[12]

M. Lazar, W. P. M. H. Heemels and A. R. Teel, Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems, IEEE Trans. Autom. Control., 54 (2009), 2421-2425. doi: 10.1109/TAC.2009.2029297.

[13]

J. Q. Qiu, K. F. Lu, P. Shi and M. S. Mahmoud, Robust exponential stability for discrete-time interval BAM neural networks with delays and Markovian jump parameters, Int. J. Adapt. Control., 24 (2010), 760-785. doi: 10.1002/acs.1171.

[14]

M. S. Peng and X. Z. Yang, New stability criteria and bifurcation analysis for nonlinear discrete-time coupled loops with multiple delays, Chaos, 20 (2010), 013125, 11pp. doi: 10.1063/1.3339857.

[15]

S. V. Naghavi and A. A. Safavi, Novel synchronization of discrete-time chaotic systems using neural network observer, Chaos, 18 (2008), 033110, 9pp. doi: 10.1063/1.2959140.

[16]

J. D. Cao and J. Q. Lu, Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16 (2006), 013133, 6pp. doi: 10.1063/1.2178448.

[17]

H. Su, W. Li and K. Wang, Global stability of discrete-time coupled systems on networks and its applications, Chaos, 22 (2012), 033135, 11pp. doi: 10.1063/1.4748851.

[18]

C. Zhang, W. Li and K. Wang, Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks, IEEE Trans. Neural Netw. Learn. Syst., 26 (2014), 1698-1709. doi: 10.1109/TNNLS.2014.2352217.

[19]

F. M. Atay and $\ddot Q$. Karabacak, Stability of coupled map networks with delays, SIAM J. Appl. Dyn. Syst., 5 (2006), 508-527. doi: 10.1137/060652531.

[20]

H. Guo, M. L. Li and Z.Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802. doi: 10.1090/S0002-9939-08-09341-6.

[21]

C. Zhang, W. Li and K. Wang, Boundedness for network of stochastic coupled van der Pol oscillators with time-varying delayed coupling, Appl. Math. Model., 37 (2013), 5394-5402. doi: 10.1016/j.apm.2012.10.032.

[22]

C. Zhang, W. Li and K. Wang, A graph-theoretic approach to stability of neutral stochastic coupled oscillators network with time-varying delayed coupling, Math. Meth. Appl. Sci., 37 (2014), 1179-1190. doi: 10.1002/mma.2879.

[23]

W. Li, H. Su, D. Wei and K. Wang, Global stability of coupled nonlinear systems with Markovian switching, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2609-2616. doi: 10.1016/j.cnsns.2011.09.039.

[24]

C. Zhang, W. Li and K. Wang, Graph-theoretic approach to stability of multi-group models with dispersal, Discrete. Cont. Dyn-B., 20 (2015), 259-280. doi: 10.3934/dcdsb.2015.20.259.

[25]

D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.

[26]

R. E. Mickens, Nonstandard finite difference schemes for differential equations, J. Differ. Equ. Appl., 8 (2002), 823-847. doi: 10.1080/1023619021000000807.

[27]

S. M. Moghadas, M. E. Alexander and B. D. Corbett, A non-standard numerical scheme for a generalized Gause-type predator-prey model, Physica D., 188 (2004), 134-151. doi: 10.1016/S0167-2789(03)00285-9.

show all references

References:
[1]

J. Wang, J. Zu, X. Liu, G. Huang and J. Zhang, Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate, J. Biol. Syst., 20 (2012), 235-258. doi: 10.1142/S021833901250009X.

[2]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. RWA, 13 (2012), 1581-1592. doi: 10.1016/j.nonrwa.2011.11.016.

[3]

C. Ji, D. Jiang, Q. Yang and N. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121-131. doi: 10.1016/j.automatica.2011.09.044.

[4]

H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 4391-4400. doi: 10.1016/j.amc.2011.10.015.

[5]

R. Sun and J. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 280-286. doi: 10.1016/j.amc.2011.05.056.

[6]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47. doi: 10.1016/j.jmaa.2009.09.017.

[7]

Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Anal. RWA, 14 (2013), 1693-1704. doi: 10.1016/j.nonrwa.2012.11.005.

[8]

J. Epperlein, S. Siegmund and P. Stehík, Evolutionary games on graphs and discrete dynamical systems, J. Difference Eq. Appl., 21 (2015), 72-95. doi: 10.1080/10236198.2014.988618.

[9]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248 (2010), 1-20. doi: 10.1016/j.jde.2009.09.003.

[10]

S. Elaydi, An Introduction to Difference Equations, 3rd ed, (Springer, New York, 2004).

[11]

G. Barlev, M. Girvan and E. Ott, Map model for synchronization of systems of many coupled oscillators, Chaos, 20 (2010), 023109. doi: 10.1063/1.3357983.

[12]

M. Lazar, W. P. M. H. Heemels and A. R. Teel, Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems, IEEE Trans. Autom. Control., 54 (2009), 2421-2425. doi: 10.1109/TAC.2009.2029297.

[13]

J. Q. Qiu, K. F. Lu, P. Shi and M. S. Mahmoud, Robust exponential stability for discrete-time interval BAM neural networks with delays and Markovian jump parameters, Int. J. Adapt. Control., 24 (2010), 760-785. doi: 10.1002/acs.1171.

[14]

M. S. Peng and X. Z. Yang, New stability criteria and bifurcation analysis for nonlinear discrete-time coupled loops with multiple delays, Chaos, 20 (2010), 013125, 11pp. doi: 10.1063/1.3339857.

[15]

S. V. Naghavi and A. A. Safavi, Novel synchronization of discrete-time chaotic systems using neural network observer, Chaos, 18 (2008), 033110, 9pp. doi: 10.1063/1.2959140.

[16]

J. D. Cao and J. Q. Lu, Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16 (2006), 013133, 6pp. doi: 10.1063/1.2178448.

[17]

H. Su, W. Li and K. Wang, Global stability of discrete-time coupled systems on networks and its applications, Chaos, 22 (2012), 033135, 11pp. doi: 10.1063/1.4748851.

[18]

C. Zhang, W. Li and K. Wang, Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks, IEEE Trans. Neural Netw. Learn. Syst., 26 (2014), 1698-1709. doi: 10.1109/TNNLS.2014.2352217.

[19]

F. M. Atay and $\ddot Q$. Karabacak, Stability of coupled map networks with delays, SIAM J. Appl. Dyn. Syst., 5 (2006), 508-527. doi: 10.1137/060652531.

[20]

H. Guo, M. L. Li and Z.Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802. doi: 10.1090/S0002-9939-08-09341-6.

[21]

C. Zhang, W. Li and K. Wang, Boundedness for network of stochastic coupled van der Pol oscillators with time-varying delayed coupling, Appl. Math. Model., 37 (2013), 5394-5402. doi: 10.1016/j.apm.2012.10.032.

[22]

C. Zhang, W. Li and K. Wang, A graph-theoretic approach to stability of neutral stochastic coupled oscillators network with time-varying delayed coupling, Math. Meth. Appl. Sci., 37 (2014), 1179-1190. doi: 10.1002/mma.2879.

[23]

W. Li, H. Su, D. Wei and K. Wang, Global stability of coupled nonlinear systems with Markovian switching, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2609-2616. doi: 10.1016/j.cnsns.2011.09.039.

[24]

C. Zhang, W. Li and K. Wang, Graph-theoretic approach to stability of multi-group models with dispersal, Discrete. Cont. Dyn-B., 20 (2015), 259-280. doi: 10.3934/dcdsb.2015.20.259.

[25]

D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.

[26]

R. E. Mickens, Nonstandard finite difference schemes for differential equations, J. Differ. Equ. Appl., 8 (2002), 823-847. doi: 10.1080/1023619021000000807.

[27]

S. M. Moghadas, M. E. Alexander and B. D. Corbett, A non-standard numerical scheme for a generalized Gause-type predator-prey model, Physica D., 188 (2004), 134-151. doi: 10.1016/S0167-2789(03)00285-9.

[1]

Chunmei Zhang, Wenxue Li, Ke Wang. Graph-theoretic approach to stability of multi-group models with dispersal. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 259-280. doi: 10.3934/dcdsb.2015.20.259

[2]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[3]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402

[4]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

[5]

Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1207-1226. doi: 10.3934/mbe.2013.10.1207

[6]

Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34

[7]

Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415

[8]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[9]

Gabriela Marinoschi. Well posedness of a time-difference scheme for a degenerate fast diffusion problem. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 435-454. doi: 10.3934/dcdsb.2010.13.435

[10]

Junxiang Li, Yan Gao, Tao Dai, Chunming Ye, Qiang Su, Jiazhen Huo. Substitution secant/finite difference method to large sparse minimax problems. Journal of Industrial and Management Optimization, 2014, 10 (2) : 637-663. doi: 10.3934/jimo.2014.10.637

[11]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, 2021, 29 (5) : 3141-3170. doi: 10.3934/era.2021031

[12]

Brittany Froese Hamfeldt, Jacob Lesniewski. A convergent finite difference method for computing minimal Lagrangian graphs. Communications on Pure and Applied Analysis, 2022, 21 (2) : 393-418. doi: 10.3934/cpaa.2021182

[13]

Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems. Electronic Research Announcements, 2019, 26: 54-71. doi: 10.3934/era.2019.26.005

[14]

Wen Li, Song Wang. Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. Journal of Industrial and Management Optimization, 2013, 9 (2) : 365-389. doi: 10.3934/jimo.2013.9.365

[15]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[16]

Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355

[17]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[18]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[19]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[20]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (189)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]