Citation: |
[1] |
S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases, Ecology Letters, 9 (2006), 467-484.doi: 10.1111/j.1461-0248.2005.00879.x. |
[2] |
G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis, Math. Biosci., 38 (1978), 113-122.doi: 10.1016/0025-5564(78)90021-4. |
[3] |
N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.doi: 10.1007/s00285-006-0015-0. |
[4] |
R. M. Bolker and B. T. Grenfell, Space, persistence, and dynamics of measles epidemics, Phil. Trans. Roy. Soc. Lond. Ser. B., 348 (1995), 309-320.doi: 10.1098/rstb.1995.0070. |
[5] |
C. Castillo-Chavez and Z. Feng, Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math. Biosci., 151 (1998), 135-154.doi: 10.1016/S0025-5564(98)10016-0. |
[6] |
C. Corduneanu, Almost Periodic Functions, Chelsea Publishing Company New York, N.Y., 1989. |
[7] |
R. Cressman and V. K$\hatr$ivan, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, J. Math. Biol., 67 (2013), 329-358.doi: 10.1007/s00285-012-0548-3. |
[8] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in the models for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324. |
[9] |
P. E. M. Fine and J. Clarkson, Measles in England and Wales 1: An analysis of factors underlying seasonal patterns, Int. J. Epidemiol., 11 (1982), 5-14.doi: 10.1093/ije/11.1.5. |
[10] |
A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1974. |
[11] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, in: Applied Mathematical Sciences, Vol. 99, Springer, Berlin, Heidelberg, New York, 1993.doi: 10.1007/978-1-4612-4342-7. |
[12] |
H. W. Hethcote, Qualitative analysis of communicable disease models, Math. Biosci., 28 (1976), 335-356.doi: 10.1016/0025-5564(76)90132-2. |
[13] |
Y. Hino, S. Murakami and T. Naiko, Functional Differential Equations with Infinite Delay, in: Lecture Notes in Mathematics, Vol. 1473, Springer, Berlin, Heidelberg, 1991. |
[14] |
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.doi: 10.1137/S0036141003439173. |
[15] |
X. Liu and X.-Q. Zhao, A periodic epidemic model with age structure in a patchy environment, SIAM J. Appl. Math., 71 (2011), 1896-1917.doi: 10.1137/100813610. |
[16] |
A. McKendrick, Applications of mathematics to medical problems, Proc. Edinb. Math. Soc., 44 (1925), 98-130.doi: 10.1017/S0013091500034428. |
[17] |
S. Novo and R. Obaya, Strictly ordered mininal subsets of a class of convex monotone skew-product semiflows, J. Differential Equations, 196 (2004), 249-288.doi: 10.1016/S0022-0396(03)00152-9. |
[18] |
S. Novo, R. Obaya and A. M. Sanz, Attractor minimal sets for cooperative and strongly convex delay differential system, J. Differential Equations, 208 (2005), 86-123.doi: 10.1016/j.jde.2004.01.002. |
[19] |
C. Núñez, R. Obaya and A. M. Sanz, Minimal sets in monotone and sublinear skew-product semiflows I: The general case, J. Differential Equations, 248 (2010), 1899-1925.doi: 10.1016/j.jde.2009.12.007. |
[20] |
R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, in Memoirs of the American Mathematical Society, 11 (1977), iv+67 pp.doi: 10.1090/memo/0190. |
[21] |
G. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold, London, 1971. |
[22] |
W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Memoirs of Amer. Math. Soc., 136 (1998), x+93 pp.doi: 10.1090/memo/0647. |
[23] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, 1995. |
[24] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511530043. |
[25] |
J. W.-H. So, J. Wu and X. Zou, Structured population on two patches: Modeling dispersal and delay, J. Math. Biol., 43 (2001), 37-51.doi: 10.1007/s002850100081. |
[26] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[27] |
B.-G. Wang and X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dyn. Diff. Equ., 25 (2013), 535-562.doi: 10.1007/s10884-013-9304-7. |
[28] |
W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112.doi: 10.1016/j.mbs.2002.11.001. |
[29] |
W. Wang and X.-Q. Zhao, An age-structured epidemic model in a patchy environment, SIAM J. Appl. Math., 65 (2005), 1597-1614.doi: 10.1137/S0036139903431245. |
[30] |
W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717.doi: 10.1007/s10884-008-9111-8. |
[31] |
D. Watts, D. Burke, B. Harrison, R. Whitmire and A. Nisalak, Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am. J. Trop. Med. Hyg., 36 (1987), 143-152. |
[32] |
F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.doi: 10.1016/j.jmaa.2006.01.085. |
[33] |
X.-Q. Zhao, Global attractivity in monotone and subhomogeneous almost periodic systems, J. Differential Equations, 187 (2003), 494-509.doi: 10.1016/S0022-0396(02)00054-2. |
[34] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.doi: 10.1007/978-0-387-21761-1. |