Citation: |
[1] |
G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis, Math. Biosci., 38 (1978), 113-122.doi: 10.1016/0025-5564(78)90021-4. |
[2] |
N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality. The case of cutaneous leishmaniasis in Chichaoua, Morocco, J. Math. Biol., 53 (2006), 421-436.doi: 10.1007/s00285-006-0015-0. |
[3] |
S. Chakraborty, S. Roy and J. Chattopadhyay, Nutrient-limited toxin production and the dynamics of two phytoplankton in culture media: a mathematical model, Ecol. Model., 213 (2008), 191-201.doi: 10.1016/j.ecolmodel.2007.12.008. |
[4] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in the models for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324. |
[5] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold en- demic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[6] |
E. I. R. Falconer and A. R. Humpage, Cyanobacterial (bluegreen algal) toxins in water supplies: cylindrospermopsins, Environ. Toxicol., 21 (2006), 299-304. |
[7] |
J. P. Grover, S.-B. Hsu and F.-B. Wang, Competition and coexistence in flowing habitats with a hydraulic storage zone, Math. Biosci., 222 (2009), 42-52.doi: 10.1016/j.mbs.2009.08.006. |
[8] |
E. Graneĺi and N. Johansson, Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions, Harmful Algae, 2 (2003), 135-145. |
[9] |
J. P. Grover, K. W. Crane, J. W. Baker, B. W. Brooks and D. L. Roelke, Spatial variation of harmful algae and their toxins in flowing-water habitats: a theoretical exploration, Journal of Plankton Research, 33 (2011), 211-227.doi: 10.1093/plankt/fbq070. |
[10] |
M. W. Hirsch, Systems of differential equations that are competitive or cooperative II: Convergence almost everywhere, SIAM J. Math. Anal., 16 (1985), 423-439.doi: 10.1137/0516030. |
[11] |
J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988. |
[12] |
P. R. Hawkins, E. Putt and I. Falconer, et al, Phenotypical variation in a toxic strain of the phytoplankter, Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) during batch culture, Environ. Toxicol., 16 (2001), 460-476. |
[13] |
S. B. Hsu, F. B. Wang and X.-Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats, J. Diff. Eqns., 255 (2013), 265-297.doi: 10.1016/j.jde.2013.04.006. |
[14] |
J. Jiang, On the global stability of cooperative systems, Bull London Math. Soc., 26 (1994), 455-458.doi: 10.1112/blms/26.5.455. |
[15] |
N. Johansson and E. Graneĺi, Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios, Mar. Biol., 135 (1999), 209-217.doi: 10.1007/s002270050618. |
[16] |
D. Lekan and C. R. Tomas, The brevetoxin and brevenal composition of three Karenia brevis clones at different salinities and nutrient conditions, Harmful Algae, 9 (2010), 39-47.doi: 10.1016/j.hal.2009.07.004. |
[17] |
C. G. R. Maier, M. D. Burch and M. Bormans, Flow management strategies to control blooms of the cyanobacterium, Anabaena circinalis, in the river Murray at Morgan, South Australia, Regul. Rivers Res. Mgmt., 17 (2001), 637-650.doi: 10.1002/rrr.623. |
[18] |
S. M. Mitrovic, L. Hardwick and R. Oliver, et. al., Use of flow management to control saxitoxin producing cyanobacterial blooms in the Lower Darling River, Australia, J. Plankton Res., 33 (2011), 229-241. |
[19] |
C. S. Reynolds, Potamoplankton: Paradigms, Paradoxes and Prognoses, in Algae and the Aquatic Environment, F. E. Round, ed., Biopress, Bristol, UK, 1990. |
[20] |
D. L. Roelke, G. M. Gable and T. W. Valenti, Hydraulic flushing as a Prymnesium parvum bloom terminating mechanism in a subtropical lake, Harmful Algae, 9 (2010), 323-332.doi: 10.1016/j.hal.2009.12.003. |
[21] |
D. L. Roelke, J. P. Grover and B. W. Brooks et al, A decade of fishkilling Prymnesium parvum blooms in Texas: Roles of inflow and salinity, J. Plankton Res., 33 (2011), 243-253. |
[22] |
H. L. Smith, Microbial growth in periodic gradostats, Rocky Mountain J. Math., 20 (1990), 1173-1194.doi: 10.1216/rmjm/1181073069. |
[23] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995. |
[24] |
G. M. Southard, L. T. Fries and A. Barkoh, Prymnesium parvum: the Texas experience, J. Am. Water Resources Assoc., 46 (2010), 14-23.doi: 10.1111/j.1752-1688.2009.00387.x. |
[25] |
H. L. Smith and P. E. Waltman, The Theory of the Chemostat, Cambridge Univ. Press, 1995.doi: 10.1017/CBO9780511530043. |
[26] |
H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.doi: 10.1016/S0362-546X(01)00678-2. |
[27] |
W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699-717.doi: 10.1007/s10884-008-9111-8. |
[28] |
K.F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.doi: 10.1016/j.jmaa.2006.01.085. |
[29] |
X.-Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications, Commun. Appl. Nonlinear Anal., 3 (1996), 43-66. |
[30] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.doi: 10.1007/978-0-387-21761-1. |