\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global attractors for the Gray-Scott equations in locally uniform spaces

Abstract Related Papers Cited by
  • In this paper, we prove the existence of a $(L_{lu}^2(\mathbb{R}^N)\times L_{lu}^2(\mathbb{R}^N),L_{\rho}^2(\mathbb{R}^N)\times L_{\rho}^2(\mathbb{R}^N))$-global attractor for the solution semigroup generated by the Gray-Scott equations on unbounded domains of space dimension $N\leq3.$
    Mathematics Subject Classification: Primary: 37L05, 35B40, 35B41; Secondary: 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Arrieta, J. Cholewa, T. Dlotko and A. Rodriguez-Bernal, Linear parabolic equations in locally spaces, Math. Models Methods Appl. Sci., 14 (2004), 253-293.doi: 10.1142/S0218202504003234.

    [2]

    A. Babin and M. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992.

    [3]

    A. Babin and M. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221-243.doi: 10.1017/S0308210500031498.

    [4]

    A. Carvalho and T. Dlotko, Partly dissipative systems in locally uniform spaces, Colloq. Math., 100 (2004), 221-242.doi: 10.4064/cm100-2-6.

    [5]

    J. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge Univ. Press, Cambridge, 2000.doi: 10.1017/CBO9780511526404.

    [6]

    J. Cholewa and T. Dlotko, Bi-spaces global attractors in abstract parabolic equations, Banach Center Pull. Evol. Equ., 60 (2003), 13-26.

    [7]

    I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta,Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; see also http://www.emis.de/monographs/Chueshov/.

    [8]

    M. Efendiev and S. Zelik, The attractor for a nonlinear reaction-diffusion system in an bounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.doi: 10.1002/cpa.1011.

    [9]

    E. Feireisl, P. Laurencot and F. Simondon, Global attractors for degenerate parabolic equations on unbounded domain, J. Differential Equations, 129 (1996), 239-261.doi: 10.1006/jdeq.1996.0117.

    [10]

    E. Feireisl, Bounded, locally compact global attractors for semilinear damped wave equations in $\mathbbR^N$, Differential Integral Equations, 9 (1996), 1147-1156.

    [11]

    P. Gray and S. Scott, Chemical Waves and Instabilities, Clarendon, Oxford, 1990.

    [12]

    J. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.

    [13]

    D. Henry, Geometric Theory of Semilinear Parabolic Problems, Lecture Notes in Mathematics 840, Springer, 1981.

    [14]

    T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205.doi: 10.1007/BF00280740.

    [15]

    O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Leizioni Lincei/Canbridge Univ. Press, Cambridge/New York, 1991.doi: 10.1017/CBO9780511569418.

    [16]

    Q. Ma, S. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. Journal, 51 (2002), 1541-1559.doi: 10.1512/iumj.2002.51.2255.

    [17]

    M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems, SIAM J. Math. Anal., 20 (1989), 816-844.doi: 10.1137/0520057.

    [18]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-1-4612-5561-1.

    [19]

    M. Prizzi and K. Rybakowski, Attractors for Semilinear Damped Wave Equations on Arbitrary Unbounded Domains, Topol. Methods Nonlinear Anal., 31 (2008), 49-82.

    [20]

    R. Temam, Infinite-Dimensional Dynamical Systems in Methanics and Physics, second edition, Springer, Berlin, 1997.doi: 10.1007/978-1-4612-0645-3.

    [21]

    H. Xiao, Asypmtotic dynamics of plate equation with a critical exponent on unbounded domain, Nonlinear Anal., 70 (2009), 1288-1301.doi: 10.1016/j.na.2008.02.012.

    [22]

    G. Yue and C. Zhong, Global attractors for plate equations with critical exponent in locally uniform spaces, Nonlinear Anal., 71 (2009), 4105-4114.doi: 10.1016/j.na.2009.02.089.

    [23]

    G. Yue and C. Zhong, Dynamics of non-autonomous reaction-diffusion equations in locally uniform spaces, Topological Methods in Nonlinear Analysis, in press.

    [24]

    B. Wang, Attractors for Reaction-Diffusion equation in unbounded domains, Physica D, 128 (1999), 41-52.doi: 10.1016/S0167-2789(98)00304-2.

    [25]

    Y. You, Global attractor of the Gray-Scott equations, Comm. Pure and Appl. Anal., 7 (2008), 947-970.doi: 10.3934/cpaa.2008.7.947.

    [26]

    S. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst., 7 (2001), 593-641.doi: 10.3934/dcds.2001.7.593.

    [27]

    C. Zhong, M. Yang and C. Sun, The existence of global attractors for norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.doi: 10.1016/j.jde.2005.06.008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return