March  2016, 21(2): 471-496. doi: 10.3934/dcdsb.2016.21.471

Spread of phage infection of bacteria in a petri dish

1. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA 85287

2. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804

3. 

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287

Received  January 2015 Revised  May 2015 Published  November 2015

We extend our previous work on the spatial spread of phage infection of immobile bacteria on an agar coated plate by explicitly including loss of viruses by both adsorption to bacteria and by decay of free viruses and by including a distributed virus latent period and distributed burst size rather than fixed values of these key parameters. We extend earlier results on the spread of virus and on the existence of traveling wave solutions when the basic reproductive number for virus, $\mathcal{R}_0$, exceeds one and we compare the results with those obtained in earlier work. Finally, we formulate and analyze a model of multiple virus strains competing to infect a common bacterial host in a petri dish.
Citation: Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of phage infection of bacteria in a petri dish. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 471-496. doi: 10.3934/dcdsb.2016.21.471
References:
[1]

E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency, Nonlinear Analysis RWA, 2 (2001), 35-74. doi: 10.1016/S0362-546X(99)00285-0.

[2]

C. Beaumont, J.-B. Burie, A. Ducrot and P. Zongo, Propogation of Salmonella within an industrial hens house, SIAM J. Appl. Math., 72 (2012), 1113-1148. doi: 10.1137/110822967.

[3]

A. Campbell, Conditions for existence of bacteriophages, Evolution, 15 (1961), 153-165. doi: 10.2307/2406076.

[4]

P. DeLeenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327. doi: 10.1137/S0036139902406905.

[5]

O. Diekmann, Limiting behaviour in an epidemic model, Nonlinear Analysis, TMA, 1 (1977), 459-470.

[6]

O. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109-130. doi: 10.1007/BF02450783.

[7]

O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal.: Theory, Methods, Appl., 2 (1978), 721-737. doi: 10.1016/0362-546X(78)90015-9.

[8]

E. Ellis and M. Delbrück, The growth of bacteriophage, J. of Physiology, 22 (1939), 365-384. doi: 10.1085/jgp.22.3.365.

[9]

D. A. Jones, G. Röst, H. L. Smith and H. R. Thieme, On Spread of Phage Infection of Bacteria in a Petri Dish, SIAM Journal on Applied Mathematics, 72 (2012), 670-688. doi: 10.1137/110848360.

[10]

D. A. Jones, H. L. Smith and H. R. Thieme, Spread of viral infection of immobilized bacteria, Networks and Heterogeneous Media, 8 (2013), 327-342. doi: 10.3934/nhm.2013.8.327.

[11]

A. L. Koch, The growth of viral plaques during enlargement phase, J. Theor. Biol., 6 (1964), 413-431. doi: 10.1016/0022-5193(64)90056-6.

[12]

Y. Lee and J. Yin, Imaging the propagation of viruses, Communication to the editor, Biotechnology and Bioengineering, 52 (1996), 438-442. doi: 10.1002/(SICI)1097-0290(19961105)52:3<438::AID-BIT11>3.0.CO;2-F.

[13]

B. Levin, F. Stewart and L. Chao, Resource-limited growth, competition, and predation: A model, and experimental studies with bacteria and bacteriophage, Amer. Naturalist, 111 (1977), 3-24. doi: 10.1086/283134.

[14]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233. doi: 10.1007/s002850200144.

[15]

M. T. Madigan and J. M. Martinko, Brock Biology of Microorganisms, 11 ed, Pearson Prentice Hall, Upper Saddle River, NJ, 2006.

[16]

M. A. Nowak and R. M. May, Virus Dynamics, Oxford University Press, New York, 2000.

[17]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[18]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44. doi: 10.1137/S0036144598335107.

[19]

R. H. Martin and H. L. Smith, Reaction-diffusion systems with time delays: Monotonicity invariance, comparison and convergence, J. reine und angewandte Mathematik, 413 (1991), 1-35.

[20]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Math., 57. Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.

[21]

H. L. Smith and H. R. Thieme, Persistence of bacteria and phages in a chemostat, J. of Math. Biol., 64 (2012), 951-979. doi: 10.1007/s00285-011-0434-4.

[22]

H. L. Smith and H. R. Thieme, A reaction-diffusion system with time-delay modeling virus plaque formation, Canadian Applied Math. Quarterly, 19 (2011), 385-399.

[23]

G. Stent, Molecular Biology Of Bacterial Viruses, W.H. Freeman and Co., London, 1963.

[24]

H. R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biology, 4 (1977), 337-351. doi: 10.1007/BF00275082.

[25]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121. doi: 10.1515/crll.1979.306.94.

[26]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biology, 8 (1979), 173-187. doi: 10.1007/BF00279720.

[27]

H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003.

[28]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Diff. Eqn., 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X.

[29]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperation models, J. Math. Biol., 45 (2002), 183-218. doi: 10.1007/s002850200145.

[30]

J. Yin and J. S. McCaskill, Replication of viruses in a growing plaque: A reaction-diffusion model, Biophysics J., 61 (1992), 1540-1549. doi: 10.1016/S0006-3495(92)81958-6.

[31]

J. Yin and L. You, Amplification and spread of viruses in a growing plaque, J. Theor. Biol., 200 (1999), 365-373.

show all references

References:
[1]

E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency, Nonlinear Analysis RWA, 2 (2001), 35-74. doi: 10.1016/S0362-546X(99)00285-0.

[2]

C. Beaumont, J.-B. Burie, A. Ducrot and P. Zongo, Propogation of Salmonella within an industrial hens house, SIAM J. Appl. Math., 72 (2012), 1113-1148. doi: 10.1137/110822967.

[3]

A. Campbell, Conditions for existence of bacteriophages, Evolution, 15 (1961), 153-165. doi: 10.2307/2406076.

[4]

P. DeLeenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327. doi: 10.1137/S0036139902406905.

[5]

O. Diekmann, Limiting behaviour in an epidemic model, Nonlinear Analysis, TMA, 1 (1977), 459-470.

[6]

O. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109-130. doi: 10.1007/BF02450783.

[7]

O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal.: Theory, Methods, Appl., 2 (1978), 721-737. doi: 10.1016/0362-546X(78)90015-9.

[8]

E. Ellis and M. Delbrück, The growth of bacteriophage, J. of Physiology, 22 (1939), 365-384. doi: 10.1085/jgp.22.3.365.

[9]

D. A. Jones, G. Röst, H. L. Smith and H. R. Thieme, On Spread of Phage Infection of Bacteria in a Petri Dish, SIAM Journal on Applied Mathematics, 72 (2012), 670-688. doi: 10.1137/110848360.

[10]

D. A. Jones, H. L. Smith and H. R. Thieme, Spread of viral infection of immobilized bacteria, Networks and Heterogeneous Media, 8 (2013), 327-342. doi: 10.3934/nhm.2013.8.327.

[11]

A. L. Koch, The growth of viral plaques during enlargement phase, J. Theor. Biol., 6 (1964), 413-431. doi: 10.1016/0022-5193(64)90056-6.

[12]

Y. Lee and J. Yin, Imaging the propagation of viruses, Communication to the editor, Biotechnology and Bioengineering, 52 (1996), 438-442. doi: 10.1002/(SICI)1097-0290(19961105)52:3<438::AID-BIT11>3.0.CO;2-F.

[13]

B. Levin, F. Stewart and L. Chao, Resource-limited growth, competition, and predation: A model, and experimental studies with bacteria and bacteriophage, Amer. Naturalist, 111 (1977), 3-24. doi: 10.1086/283134.

[14]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233. doi: 10.1007/s002850200144.

[15]

M. T. Madigan and J. M. Martinko, Brock Biology of Microorganisms, 11 ed, Pearson Prentice Hall, Upper Saddle River, NJ, 2006.

[16]

M. A. Nowak and R. M. May, Virus Dynamics, Oxford University Press, New York, 2000.

[17]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[18]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44. doi: 10.1137/S0036144598335107.

[19]

R. H. Martin and H. L. Smith, Reaction-diffusion systems with time delays: Monotonicity invariance, comparison and convergence, J. reine und angewandte Mathematik, 413 (1991), 1-35.

[20]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Math., 57. Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.

[21]

H. L. Smith and H. R. Thieme, Persistence of bacteria and phages in a chemostat, J. of Math. Biol., 64 (2012), 951-979. doi: 10.1007/s00285-011-0434-4.

[22]

H. L. Smith and H. R. Thieme, A reaction-diffusion system with time-delay modeling virus plaque formation, Canadian Applied Math. Quarterly, 19 (2011), 385-399.

[23]

G. Stent, Molecular Biology Of Bacterial Viruses, W.H. Freeman and Co., London, 1963.

[24]

H. R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biology, 4 (1977), 337-351. doi: 10.1007/BF00275082.

[25]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121. doi: 10.1515/crll.1979.306.94.

[26]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biology, 8 (1979), 173-187. doi: 10.1007/BF00279720.

[27]

H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003.

[28]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Diff. Eqn., 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X.

[29]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperation models, J. Math. Biol., 45 (2002), 183-218. doi: 10.1007/s002850200145.

[30]

J. Yin and J. S. McCaskill, Replication of viruses in a growing plaque: A reaction-diffusion model, Biophysics J., 61 (1992), 1540-1549. doi: 10.1016/S0006-3495(92)81958-6.

[31]

J. Yin and L. You, Amplification and spread of viruses in a growing plaque, J. Theor. Biol., 200 (1999), 365-373.

[1]

Louis D. Bergsman, James M. Hyman, Carrie A. Manore. A mathematical model for the spread of west nile virus in migratory and resident birds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 401-424. doi: 10.3934/mbe.2015009

[2]

Rongsong Liu, Jiangping Shuai, Jianhong Wu, Huaiping Zhu. Modeling spatial spread of west nile virus and impact of directional dispersal of birds. Mathematical Biosciences & Engineering, 2006, 3 (1) : 145-160. doi: 10.3934/mbe.2006.3.145

[3]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[4]

Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181

[5]

Karl P. Hadeler. Stefan problem, traveling fronts, and epidemic spread. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 417-436. doi: 10.3934/dcdsb.2016.21.417

[6]

Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4959-4985. doi: 10.3934/dcds.2021064

[7]

Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283

[8]

Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1233-1246. doi: 10.3934/mbe.2017063

[9]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[10]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for virus-immune models with infinite delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3093-3114. doi: 10.3934/dcdsb.2015.20.3093

[11]

Wenjie Zuo, Junping Shi. Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1179-1200. doi: 10.3934/cpaa.2018057

[12]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[13]

Carlos Castillo-Chavez, Bingtuan Li, Haiyan Wang. Some recent developments on linear determinacy. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1419-1436. doi: 10.3934/mbe.2013.10.1419

[14]

Wendi Wang. Population dispersal and disease spread. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[15]

Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

[16]

Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415

[17]

Elisa Gorla, Felice Manganiello, Joachim Rosenthal. An algebraic approach for decoding spread codes. Advances in Mathematics of Communications, 2012, 6 (4) : 443-466. doi: 10.3934/amc.2012.6.443

[18]

Shigui Ruan, Wendi Wang, Simon A. Levin. The effect of global travel on the spread of SARS. Mathematical Biosciences & Engineering, 2006, 3 (1) : 205-218. doi: 10.3934/mbe.2006.3.205

[19]

Don A. Jones, Hal L. Smith, Horst R. Thieme. Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8 (1) : 327-342. doi: 10.3934/nhm.2013.8.327

[20]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (191)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]