Advanced Search
Article Contents
Article Contents

Spread of phage infection of bacteria in a petri dish

Abstract Related Papers Cited by
  • We extend our previous work on the spatial spread of phage infection of immobile bacteria on an agar coated plate by explicitly including loss of viruses by both adsorption to bacteria and by decay of free viruses and by including a distributed virus latent period and distributed burst size rather than fixed values of these key parameters. We extend earlier results on the spread of virus and on the existence of traveling wave solutions when the basic reproductive number for virus, $\mathcal{R}_0$, exceeds one and we compare the results with those obtained in earlier work. Finally, we formulate and analyze a model of multiple virus strains competing to infect a common bacterial host in a petri dish.
    Mathematics Subject Classification: Primary: 92B05; Secondary: 35C07.


    \begin{equation} \\ \end{equation}
  • [1]

    E. Beretta and Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency, Nonlinear Analysis RWA, 2 (2001), 35-74.doi: 10.1016/S0362-546X(99)00285-0.


    C. Beaumont, J.-B. Burie, A. Ducrot and P. Zongo, Propogation of Salmonella within an industrial hens house, SIAM J. Appl. Math., 72 (2012), 1113-1148.doi: 10.1137/110822967.


    A. Campbell, Conditions for existence of bacteriophages, Evolution, 15 (1961), 153-165.doi: 10.2307/2406076.


    P. DeLeenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.doi: 10.1137/S0036139902406905.


    O. Diekmann, Limiting behaviour in an epidemic model, Nonlinear Analysis, TMA, 1 (1977), 459-470.


    O. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109-130.doi: 10.1007/BF02450783.


    O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal.: Theory, Methods, Appl., 2 (1978), 721-737.doi: 10.1016/0362-546X(78)90015-9.


    E. Ellis and M. Delbrück, The growth of bacteriophage, J. of Physiology, 22 (1939), 365-384.doi: 10.1085/jgp.22.3.365.


    D. A. Jones, G. Röst, H. L. Smith and H. R. Thieme, On Spread of Phage Infection of Bacteria in a Petri Dish, SIAM Journal on Applied Mathematics, 72 (2012), 670-688.doi: 10.1137/110848360.


    D. A. Jones, H. L. Smith and H. R. Thieme, Spread of viral infection of immobilized bacteria, Networks and Heterogeneous Media, 8 (2013), 327-342.doi: 10.3934/nhm.2013.8.327.


    A. L. Koch, The growth of viral plaques during enlargement phase, J. Theor. Biol., 6 (1964), 413-431.doi: 10.1016/0022-5193(64)90056-6.


    Y. Lee and J. Yin, Imaging the propagation of viruses, Communication to the editor, Biotechnology and Bioengineering, 52 (1996), 438-442.doi: 10.1002/(SICI)1097-0290(19961105)52:3<438::AID-BIT11>3.0.CO;2-F.


    B. Levin, F. Stewart and L. Chao, Resource-limited growth, competition, and predation: A model, and experimental studies with bacteria and bacteriophage, Amer. Naturalist, 111 (1977), 3-24.doi: 10.1086/283134.


    M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233.doi: 10.1007/s002850200144.


    M. T. Madigan and J. M. Martinko, Brock Biology of Microorganisms, 11 ed, Pearson Prentice Hall, Upper Saddle River, NJ, 2006.


    M. A. Nowak and R. M. May, Virus Dynamics, Oxford University Press, New York, 2000.


    C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.


    A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44.doi: 10.1137/S0036144598335107.


    R. H. Martin and H. L. Smith, Reaction-diffusion systems with time delays: Monotonicity invariance, comparison and convergence, J. reine und angewandte Mathematik, 413 (1991), 1-35.


    H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Math., 57. Springer, New York, 2011.doi: 10.1007/978-1-4419-7646-8.


    H. L. Smith and H. R. Thieme, Persistence of bacteria and phages in a chemostat, J. of Math. Biol., 64 (2012), 951-979.doi: 10.1007/s00285-011-0434-4.


    H. L. Smith and H. R. Thieme, A reaction-diffusion system with time-delay modeling virus plaque formation, Canadian Applied Math. Quarterly, 19 (2011), 385-399.


    G. Stent, Molecular Biology Of Bacterial Viruses, W.H. Freeman and Co., London, 1963.


    H. R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biology, 4 (1977), 337-351.doi: 10.1007/BF00275082.


    H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121.doi: 10.1515/crll.1979.306.94.


    H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biology, 8 (1979), 173-187.doi: 10.1007/BF00279720.


    H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003.


    H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Diff. Eqn., 195 (2003), 430-470.doi: 10.1016/S0022-0396(03)00175-X.


    H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperation models, J. Math. Biol., 45 (2002), 183-218.doi: 10.1007/s002850200145.


    J. Yin and J. S. McCaskill, Replication of viruses in a growing plaque: A reaction-diffusion model, Biophysics J., 61 (1992), 1540-1549.doi: 10.1016/S0006-3495(92)81958-6.


    J. Yin and L. You, Amplification and spread of viruses in a growing plaque, J. Theor. Biol., 200 (1999), 365-373.

  • 加载中

Article Metrics

HTML views() PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint