-
Previous Article
Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise
- DCDS-B Home
- This Issue
-
Next Article
Oscillations in age-structured models of consumer-resource mutualisms
On the analytic integrability of the Liénard analytic differential systems
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia |
2. | Departamento de Matemática, Instituto Superior Técnico , Universidade Técnica de Lisboa, Av. Rovisco Pais 1049-001, Lisboa |
References:
[1] |
C. Christopher, An algebraic approach to the classification of centers in polynomial Liénard systems, J. Math. Anal. Appl., 229 (1999), 319-329.
doi: 10.1006/jmaa.1998.6175. |
[2] |
C. Christopher and N. G. Lloyd, Small-amplitude limit cycles in polynomial Liénard systems, NoDEA, 3 (1996), 183-190.
doi: 10.1007/BF01195913. |
[3] |
H. Dulac, Détermination et intégration d'une certaine classe d'équation différentielles ayant pour point singulier un centre, Bull. Sciences Math. Sér. 2, 32 (1908), 230-252. |
[4] |
S. D. Furta, On non-integrability of general systems of differential equations, Z. angew Math. Phys., 47 (1996), 112-131.
doi: 10.1007/BF00917577. |
[5] |
W. Li, J. Llibre and X. Zhang, Local first integrals of differential systems and diffeomorphisms, Z. angew. Math. Phys., 54 (2003), 235-255.
doi: 10.1007/s000330300003. |
[6] |
A. M. Liapunov, Stability of Motion, Mathematics in Science and Engineering, Vol. 30 Academic Press, New York-London, 1966.
doi: 10.1002/zamm.19680480223. |
[7] |
J. Llibre and D. Schlomiuk, The geometry of quadratic differential systems with a weak focus} {of third order, Canadian J. Math., 56 (2004), 310-343.
doi: 10.4153/CJM-2004-015-2. |
[8] |
R. Moussu, Une démonstration d'un théorème de Lyapunov-Poincaré, Astérisque, 98/99 (1982), 216-223. |
[9] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84. |
[10] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, J. Math. Pure Appl., (4) 1 (1885), 167-244. |
[11] |
H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré I and II, Rendiconti del circolo matematico di Palermo, 5 (1891), 161-191; 11 (1897), 193-239. |
[12] |
D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields, Bifurcation and Periodic Orbits of Vector Fields, (ed. D. Schlomiuk) 408 (1993), 429-467.
doi: 10.1007/978-94-015-8238-4_10. |
[13] |
S. Songling, A method of constructing cycles without contact around a weak focus, J. Differential Equations, 41 (1981), 301-312.
doi: 10.1016/0022-0396(81)90039-5. |
[14] |
S. Songling, On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields, J. Differential Equations, 52 (1984), 52-57.
doi: 10.1016/0022-0396(84)90133-5. |
[15] |
C. Zuppa, Order of cyclicity of the singular point of Liénard's polynomial vector fields, Bol. Soc. Brasil Mat., 12 (1982), 105-111.
doi: 10.1007/BF02584662. |
show all references
References:
[1] |
C. Christopher, An algebraic approach to the classification of centers in polynomial Liénard systems, J. Math. Anal. Appl., 229 (1999), 319-329.
doi: 10.1006/jmaa.1998.6175. |
[2] |
C. Christopher and N. G. Lloyd, Small-amplitude limit cycles in polynomial Liénard systems, NoDEA, 3 (1996), 183-190.
doi: 10.1007/BF01195913. |
[3] |
H. Dulac, Détermination et intégration d'une certaine classe d'équation différentielles ayant pour point singulier un centre, Bull. Sciences Math. Sér. 2, 32 (1908), 230-252. |
[4] |
S. D. Furta, On non-integrability of general systems of differential equations, Z. angew Math. Phys., 47 (1996), 112-131.
doi: 10.1007/BF00917577. |
[5] |
W. Li, J. Llibre and X. Zhang, Local first integrals of differential systems and diffeomorphisms, Z. angew. Math. Phys., 54 (2003), 235-255.
doi: 10.1007/s000330300003. |
[6] |
A. M. Liapunov, Stability of Motion, Mathematics in Science and Engineering, Vol. 30 Academic Press, New York-London, 1966.
doi: 10.1002/zamm.19680480223. |
[7] |
J. Llibre and D. Schlomiuk, The geometry of quadratic differential systems with a weak focus} {of third order, Canadian J. Math., 56 (2004), 310-343.
doi: 10.4153/CJM-2004-015-2. |
[8] |
R. Moussu, Une démonstration d'un théorème de Lyapunov-Poincaré, Astérisque, 98/99 (1982), 216-223. |
[9] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3-84. |
[10] |
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, J. Math. Pure Appl., (4) 1 (1885), 167-244. |
[11] |
H. Poincaré, Sur l'intégration des équations différentielles du premier order et du premier degré I and II, Rendiconti del circolo matematico di Palermo, 5 (1891), 161-191; 11 (1897), 193-239. |
[12] |
D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial vector fields, Bifurcation and Periodic Orbits of Vector Fields, (ed. D. Schlomiuk) 408 (1993), 429-467.
doi: 10.1007/978-94-015-8238-4_10. |
[13] |
S. Songling, A method of constructing cycles without contact around a weak focus, J. Differential Equations, 41 (1981), 301-312.
doi: 10.1016/0022-0396(81)90039-5. |
[14] |
S. Songling, On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields, J. Differential Equations, 52 (1984), 52-57.
doi: 10.1016/0022-0396(84)90133-5. |
[15] |
C. Zuppa, Order of cyclicity of the singular point of Liénard's polynomial vector fields, Bol. Soc. Brasil Mat., 12 (1982), 105-111.
doi: 10.1007/BF02584662. |
[1] |
A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126 |
[2] |
Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657 |
[3] |
Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797 |
[4] |
Antonio Algaba, María Díaz, Cristóbal García, Jaume Giné. Analytic integrability around a nilpotent singularity: The non-generic case. Communications on Pure and Applied Analysis, 2020, 19 (1) : 407-423. doi: 10.3934/cpaa.2020021 |
[5] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[6] |
Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237 |
[7] |
Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187 |
[8] |
Andrew N. W. Hone, Michael V. Irle. On the non-integrability of the Popowicz peakon system. Conference Publications, 2009, 2009 (Special) : 359-366. doi: 10.3934/proc.2009.2009.359 |
[9] |
Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043 |
[10] |
Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127 |
[11] |
Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645 |
[12] |
Brigita Ferčec, Valery G. Romanovski, Yilei Tang, Ling Zhang. Integrability and bifurcation of a three-dimensional circuit differential system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4573-4588. doi: 10.3934/dcdsb.2021243 |
[13] |
Hong Li. Bifurcation of limit cycles from a Li$ \acute{E} $nard system with asymmetric figure eight-loop case. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022033 |
[14] |
Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481 |
[15] |
Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107 |
[16] |
Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121 |
[17] |
Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137 |
[18] |
Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441 |
[19] |
Sang-hyun Kim, Thomas Koberda. Integrability of moduli and regularity of denjoy counterexamples. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 6061-6088. doi: 10.3934/dcds.2020259 |
[20] |
Menita Carozza, Gioconda Moscariello, Antonia Passarelli. Higher integrability for minimizers of anisotropic functionals. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 43-55. doi: 10.3934/dcdsb.2009.11.43 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]