Citation: |
[1] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynamics and Differential Equations, 9 (1997), 307-341.doi: 10.1007/BF02219225. |
[2] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.doi: 10.1007/BF01193705. |
[3] |
A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pure Appl., 77 (1998), 967-988.doi: 10.1016/S0021-7824(99)80001-4. |
[4] |
J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), 1005-1017.doi: 10.1016/j.jmaa.2008.03.061. |
[5] |
C. W. Gardiner, Handbooks of Stochastic Methods for Physics, Chemistry and Natural Sciences, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-3-662-02377-8. |
[6] |
B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Commun. Partial Differential Equations, 36 (2011), 247-255.doi: 10.1080/03605302.2010.503769. |
[7] |
B. Guo and M. Zeng, Solutions for the fractional Landau-Lifshitz equation, J. Math. Anal. Appl., 361 (2010), 131-138.doi: 10.1016/j.jmaa.2009.09.009. |
[8] |
S. Holm and S. P. Näsholm, Comparison of fractional wave equations for power law attenuation in ultrasound and elastography, Ultrasound Med. Biol., 40 (2014), 695-703.doi: 10.1016/j.ultrasmedbio.2013.09.033. |
[9] |
N. Laskin, Fractional Schrödinger equation, Physical Review E, 66 (2002), 056108, 7pp.doi: 10.1103/PhysRevE.66.056108. |
[10] |
H. Lu, S. Lü and Z. Feng, Asymptotic dynamics of 2d fractional complex Ginzburg-Landau equation, Int. J. Bifur. Chaos, 23 (2013), 1350202, 12pp.doi: 10.1142/S0218127413502027. |
[11] |
H. Lu and S. Lü, Random attractor for fractional Ginzburg-Landau equation with multiplicative noise, Taiwanese J. Math., 18 (2014), 435-450.doi: 10.11650/tjm.18.2014.3053. |
[12] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (200), 1-77. doi: 10.1016/S0370-1573(00)00070-3. |
[13] |
E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, Nonequilibrium phenomena, II, North-Holland, Amsterdam, 1984, 1-121. |
[14] |
R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Solidi. B, 133 (1986), 425-430.doi: 10.1002/pssb.2221330150. |
[15] |
L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162. |
[16] |
X. Pu and B. Guo, Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation, J. Math. Anal. Appl., 372 (2010), 86-98.doi: 10.1016/j.jmaa.2010.06.035. |
[17] |
X. Pu and B. Guo, Well-posedness and dynamics for the fractional Ginzburg-Landau equation, Appl. Anal., 92 (2013), 318-334.doi: 10.1080/00036811.2011.614601. |
[18] |
A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764.doi: 10.1063/1.166272. |
[19] |
M. F. Shlesinger, G. M. Zaslavsky and J. Klafter, Strange kinetics, Nature, 363 (1993), 31-37.doi: 10.1038/363031a0. |
[20] |
Y. Su and Z. Feng, Existence theory for an arbitrary order fractional differential equation with deviating argument, Acta Appl. Math., 118 (2012), 81-105.doi: 10.1007/s10440-012-9679-1. |
[21] |
V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261.doi: 10.1016/j.physa.2005.02.047. |
[22] |
R. Temam, Infinite Dimension Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4684-0313-8. |
[23] |
S. Wheatcraft and M. Meerschaert, Fractional conservation of mass, Advances in Water Resources, 31 (2008), 1377-1381.doi: 10.1016/j.advwatres.2008.07.004. |
[24] |
G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Reprint of the 2005 original. Oxford University Press, Oxford, 2008. |
[25] |
G. M. Zaslavsky and M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 11 (2001), 295-305.doi: 10.1063/1.1355358. |