    March  2016, 21(2): 575-590. doi: 10.3934/dcdsb.2016.21.575

## Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise

 1 School of Mathematics and Systems Science & LMIB, Beijing University of Aeronautics and Astronautics, Beijing, 100191 2 School of Mathematics and Systems Science, Beijing University of Aeronautics and Astronautics, Beijing 100191, China 3 School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, TX 78539, United States

Received  December 2014 Revised  May 2015 Published  November 2015

In this work, we analyze the stochastic fractional Ginzburg-Landau equation with multiplicative noise in two spatial dimensions with a particular interest in the asymptotic behavior of its solutions. To get started, we first transfer the stochastic fractional Ginzburg-Landau equation into a random equation whose solutions generate a random dynamical system. The existence of a random attractor for the resulting random dynamical system is explored, and the Hausdorff dimension of the random attractor is estimated.
Citation: Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575
##### References:
  H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynamics and Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225.  Google Scholar  H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.  Google Scholar  A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pure Appl., 77 (1998), 967-988. doi: 10.1016/S0021-7824(99)80001-4.  Google Scholar  J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), 1005-1017. doi: 10.1016/j.jmaa.2008.03.061.  Google Scholar  C. W. Gardiner, Handbooks of Stochastic Methods for Physics, Chemistry and Natural Sciences, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-662-02377-8.  Google Scholar  B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Commun. Partial Differential Equations, 36 (2011), 247-255. doi: 10.1080/03605302.2010.503769.  Google Scholar  B. Guo and M. Zeng, Solutions for the fractional Landau-Lifshitz equation, J. Math. Anal. Appl., 361 (2010), 131-138. doi: 10.1016/j.jmaa.2009.09.009.  Google Scholar  S. Holm and S. P. Näsholm, Comparison of fractional wave equations for power law attenuation in ultrasound and elastography, Ultrasound Med. Biol., 40 (2014), 695-703. doi: 10.1016/j.ultrasmedbio.2013.09.033. Google Scholar  N. Laskin, Fractional Schrödinger equation, Physical Review E, 66 (2002), 056108, 7pp. doi: 10.1103/PhysRevE.66.056108.  Google Scholar  H. Lu, S. Lü and Z. Feng, Asymptotic dynamics of 2d fractional complex Ginzburg-Landau equation, Int. J. Bifur. Chaos, 23 (2013), 1350202, 12pp. doi: 10.1142/S0218127413502027.  Google Scholar  H. Lu and S. Lü, Random attractor for fractional Ginzburg-Landau equation with multiplicative noise, Taiwanese J. Math., 18 (2014), 435-450. doi: 10.11650/tjm.18.2014.3053.  Google Scholar  R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (): 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar  E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, Nonequilibrium phenomena, II, North-Holland, Amsterdam, 1984, 1-121. Google Scholar  R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Solidi. B, 133 (1986), 425-430. doi: 10.1002/pssb.2221330150. Google Scholar  L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162. Google Scholar  X. Pu and B. Guo, Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation, J. Math. Anal. Appl., 372 (2010), 86-98. doi: 10.1016/j.jmaa.2010.06.035.  Google Scholar  X. Pu and B. Guo, Well-posedness and dynamics for the fractional Ginzburg-Landau equation, Appl. Anal., 92 (2013), 318-334. doi: 10.1080/00036811.2011.614601.  Google Scholar  A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764. doi: 10.1063/1.166272.  Google Scholar  M. F. Shlesinger, G. M. Zaslavsky and J. Klafter, Strange kinetics, Nature, 363 (1993), 31-37. doi: 10.1038/363031a0. Google Scholar  Y. Su and Z. Feng, Existence theory for an arbitrary order fractional differential equation with deviating argument, Acta Appl. Math., 118 (2012), 81-105. doi: 10.1007/s10440-012-9679-1.  Google Scholar  V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261. doi: 10.1016/j.physa.2005.02.047. Google Scholar  R. Temam, Infinite Dimension Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar  S. Wheatcraft and M. Meerschaert, Fractional conservation of mass, Advances in Water Resources, 31 (2008), 1377-1381. doi: 10.1016/j.advwatres.2008.07.004. Google Scholar  G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Reprint of the 2005 original. Oxford University Press, Oxford, 2008. Google Scholar  G. M. Zaslavsky and M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 11 (2001), 295-305. doi: 10.1063/1.1355358.  Google Scholar

show all references

##### References:
  H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynamics and Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225.  Google Scholar  H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.  Google Scholar  A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pure Appl., 77 (1998), 967-988. doi: 10.1016/S0021-7824(99)80001-4.  Google Scholar  J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344 (2008), 1005-1017. doi: 10.1016/j.jmaa.2008.03.061.  Google Scholar  C. W. Gardiner, Handbooks of Stochastic Methods for Physics, Chemistry and Natural Sciences, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-662-02377-8.  Google Scholar  B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Commun. Partial Differential Equations, 36 (2011), 247-255. doi: 10.1080/03605302.2010.503769.  Google Scholar  B. Guo and M. Zeng, Solutions for the fractional Landau-Lifshitz equation, J. Math. Anal. Appl., 361 (2010), 131-138. doi: 10.1016/j.jmaa.2009.09.009.  Google Scholar  S. Holm and S. P. Näsholm, Comparison of fractional wave equations for power law attenuation in ultrasound and elastography, Ultrasound Med. Biol., 40 (2014), 695-703. doi: 10.1016/j.ultrasmedbio.2013.09.033. Google Scholar  N. Laskin, Fractional Schrödinger equation, Physical Review E, 66 (2002), 056108, 7pp. doi: 10.1103/PhysRevE.66.056108.  Google Scholar  H. Lu, S. Lü and Z. Feng, Asymptotic dynamics of 2d fractional complex Ginzburg-Landau equation, Int. J. Bifur. Chaos, 23 (2013), 1350202, 12pp. doi: 10.1142/S0218127413502027.  Google Scholar  H. Lu and S. Lü, Random attractor for fractional Ginzburg-Landau equation with multiplicative noise, Taiwanese J. Math., 18 (2014), 435-450. doi: 10.11650/tjm.18.2014.3053.  Google Scholar  R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (): 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar  E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, Nonequilibrium phenomena, II, North-Holland, Amsterdam, 1984, 1-121. Google Scholar  R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Solidi. B, 133 (1986), 425-430. doi: 10.1002/pssb.2221330150. Google Scholar  L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162. Google Scholar  X. Pu and B. Guo, Global weak solutions of the fractional Landau-Lifshitz-Maxwell equation, J. Math. Anal. Appl., 372 (2010), 86-98. doi: 10.1016/j.jmaa.2010.06.035.  Google Scholar  X. Pu and B. Guo, Well-posedness and dynamics for the fractional Ginzburg-Landau equation, Appl. Anal., 92 (2013), 318-334. doi: 10.1080/00036811.2011.614601.  Google Scholar  A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7 (1997), 753-764. doi: 10.1063/1.166272.  Google Scholar  M. F. Shlesinger, G. M. Zaslavsky and J. Klafter, Strange kinetics, Nature, 363 (1993), 31-37. doi: 10.1038/363031a0. Google Scholar  Y. Su and Z. Feng, Existence theory for an arbitrary order fractional differential equation with deviating argument, Acta Appl. Math., 118 (2012), 81-105. doi: 10.1007/s10440-012-9679-1.  Google Scholar  V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261. doi: 10.1016/j.physa.2005.02.047. Google Scholar  R. Temam, Infinite Dimension Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar  S. Wheatcraft and M. Meerschaert, Fractional conservation of mass, Advances in Water Resources, 31 (2008), 1377-1381. doi: 10.1016/j.advwatres.2008.07.004. Google Scholar  G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Reprint of the 2005 original. Oxford University Press, Oxford, 2008. Google Scholar  G. M. Zaslavsky and M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 11 (2001), 295-305. doi: 10.1063/1.1355358.  Google Scholar
  Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233  N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711  N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476  N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647  Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871  Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173  Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665  Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359  Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311  Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825  Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056  Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181  Dandan Ma, Ji Shu, Ling Qin. Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4335-4359. doi: 10.3934/dcdsb.2020100  Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205  Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks & Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715  Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121  Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075  Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507  Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579  Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329

2019 Impact Factor: 1.27

## Metrics

• PDF downloads (85)
• HTML views (0)
• Cited by (2)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]