• Previous Article
    Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions
  • DCDS-B Home
  • This Issue
  • Next Article
    Growth of single phytoplankton species with internal storage in a water column
March  2016, 21(2): 621-639. doi: 10.3934/dcdsb.2016.21.621

Competition between two similar species in the unstirred chemostat

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710119

2. 

Institute for Mathematical Sciences, Renmin University of China, Haidian District, Beijing, 100872

Received  January 2015 Revised  May 2015 Published  November 2015

This paper deals with the competition between two similar species in the unstirred chemostat. Due to the strict competition of the unstirred chemostat model, the global dynamics of the system is attained by analyzing the equilibria and their stability. It turns out that the dynamics of the system essentially depends upon certain function of the growth rate. Moreover, one of the semi-trivial stationary solutions or the unique coexistence steady state is a global attractor under certain conditions. Biologically, the results indicate that it is possible for the mutant to force the extinction of resident species or to coexist with it.
Citation: Hua Nie, Yuan Lou, Jianhua Wu. Competition between two similar species in the unstirred chemostat. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 621-639. doi: 10.3934/dcdsb.2016.21.621
References:
[1]

F. Castella and S. Madec, Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates, J. Math. Biol., 68 (2014), 377-415. doi: 10.1007/s00285-012-0633-7.

[2]

L. Dung and H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor, J. Differential Equations, 130 (1996), 59-91. doi: 10.1006/jdeq.1996.0132.

[3]

G. Guo, J. H. Wu and Y. Wang, Bifurcation from a double eigenvalue in the unstirred chemostat, Appl. Anal., 92 (2013), 1449-1461. doi: 10.1080/00036811.2012.683786.

[4]

P. Hess, Periodic Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Harlow, UK, 1991.

[5]

S. B. Hsu, H. L. Smith and P. Waltman, Dynamics of competition in the unstirred Chemostat, Canad. Appl. Math. Quart., 2 (1994), 461-483.

[6]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044. doi: 10.1137/0153051.

[7]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near a degenerate limit, SIAM J. Math. Anal., 35 (2003), 453-491. doi: 10.1137/S0036141002402189.

[8]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Differential Equations, 230 (2006), 720-742. doi: 10.1016/j.jde.2006.04.005.

[9]

H. Nie and J. H. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat, J. Math. Anal. Appl., 355 (2009), 231-242. doi: 10.1016/j.jmaa.2009.01.045.

[10]

H. Nie and J. H. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model, Appl. Anal., 89 (2010), 1141-1159. doi: 10.1080/00036811003717954.

[11]

H. Nie and J. H. Wu, The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat, Discrete Contin. Dyn. Syst., 32 (2012), 303-329. doi: 10.3934/dcds.2012.32.303.

[12]

H. Nie and J. H. Wu, Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin, European J. Appl. Math., 25 (2014), 481-510. doi: 10.1017/S0956792514000096.

[13]

H. Nie, W. Xie and J. H. Wu, Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor, Comm. Pure Appl. Anal., 12 (2013), 1279-1297. doi: 10.3934/cpaa.2013.12.1279.

[14]

T. Kato, Perturbation Theory of Linear Operators, Springer, Berlin, 1966.

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs 41, American Mathematical Society, Providence, RI, 1995.

[16]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.

[17]

J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat, Appl. Math. Comput., 32 (1989), 169-183. doi: 10.1016/0096-3003(89)90092-1.

[18]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763. doi: 10.1007/BF00173267.

[19]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835. doi: 10.1016/S0362-546X(98)00250-8.

[20]

J. H. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Math. Anal., 38 (2007), 1860-1885. doi: 10.1137/050627514.

[21]

J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat, J. Differential Equations, 172 (2001), 300-332. doi: 10.1006/jdeq.2000.3870.

show all references

References:
[1]

F. Castella and S. Madec, Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates, J. Math. Biol., 68 (2014), 377-415. doi: 10.1007/s00285-012-0633-7.

[2]

L. Dung and H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor, J. Differential Equations, 130 (1996), 59-91. doi: 10.1006/jdeq.1996.0132.

[3]

G. Guo, J. H. Wu and Y. Wang, Bifurcation from a double eigenvalue in the unstirred chemostat, Appl. Anal., 92 (2013), 1449-1461. doi: 10.1080/00036811.2012.683786.

[4]

P. Hess, Periodic Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Harlow, UK, 1991.

[5]

S. B. Hsu, H. L. Smith and P. Waltman, Dynamics of competition in the unstirred Chemostat, Canad. Appl. Math. Quart., 2 (1994), 461-483.

[6]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044. doi: 10.1137/0153051.

[7]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near a degenerate limit, SIAM J. Math. Anal., 35 (2003), 453-491. doi: 10.1137/S0036141002402189.

[8]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Differential Equations, 230 (2006), 720-742. doi: 10.1016/j.jde.2006.04.005.

[9]

H. Nie and J. H. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat, J. Math. Anal. Appl., 355 (2009), 231-242. doi: 10.1016/j.jmaa.2009.01.045.

[10]

H. Nie and J. H. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model, Appl. Anal., 89 (2010), 1141-1159. doi: 10.1080/00036811003717954.

[11]

H. Nie and J. H. Wu, The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat, Discrete Contin. Dyn. Syst., 32 (2012), 303-329. doi: 10.3934/dcds.2012.32.303.

[12]

H. Nie and J. H. Wu, Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin, European J. Appl. Math., 25 (2014), 481-510. doi: 10.1017/S0956792514000096.

[13]

H. Nie, W. Xie and J. H. Wu, Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor, Comm. Pure Appl. Anal., 12 (2013), 1279-1297. doi: 10.3934/cpaa.2013.12.1279.

[14]

T. Kato, Perturbation Theory of Linear Operators, Springer, Berlin, 1966.

[15]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs 41, American Mathematical Society, Providence, RI, 1995.

[16]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.

[17]

J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat, Appl. Math. Comput., 32 (1989), 169-183. doi: 10.1016/0096-3003(89)90092-1.

[18]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763. doi: 10.1007/BF00173267.

[19]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835. doi: 10.1016/S0362-546X(98)00250-8.

[20]

J. H. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Math. Anal., 38 (2007), 1860-1885. doi: 10.1137/050627514.

[21]

J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat, J. Differential Equations, 172 (2001), 300-332. doi: 10.1006/jdeq.2000.3870.

[1]

Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201

[2]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[3]

Hua Nie, Feng-Bin Wang. Competition for one nutrient with recycling and allelopathy in an unstirred chemostat. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2129-2155. doi: 10.3934/dcdsb.2015.20.2129

[4]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[5]

Hai-Xia Li, Jian-Hua Wu, Yan-Ling Li, Chun-An Liu. Positive solutions to the unstirred chemostat model with Crowley-Martin functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2951-2966. doi: 10.3934/dcdsb.2017128

[6]

Hua Nie, Sze-bi Hsu, Jianhua Wu. A competition model with dynamically allocated toxin production in the unstirred chemostat. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1373-1404. doi: 10.3934/cpaa.2017066

[7]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[8]

Xiaoqing He, Sze-Bi Hsu, Feng-Bin Wang. A periodic-parabolic Droop model for two species competition in an unstirred chemostat. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4427-4451. doi: 10.3934/dcds.2020185

[9]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[10]

Willard S. Keeran, Patrick D. Leenheer, Sergei S. Pilyugin. Feedback-mediated coexistence and oscillations in the chemostat. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 321-351. doi: 10.3934/dcdsb.2008.9.321

[11]

Jianyu Chen. On essential coexistence of zero and nonzero Lyapunov exponents. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4149-4170. doi: 10.3934/dcds.2012.32.4149

[12]

Hua Nie, Jianhua Wu. The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 303-329. doi: 10.3934/dcds.2012.32.303

[13]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[14]

Xingwang Yu, Sanling Yuan. Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2373-2390. doi: 10.3934/dcdsb.2020014

[15]

Charlotte Beauthier, Joseph J. Winkin, Denis Dochain. Input/state invariant LQ-optimal control: Application to competitive coexistence in a chemostat. Evolution Equations and Control Theory, 2015, 4 (2) : 143-158. doi: 10.3934/eect.2015.4.143

[16]

Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971

[17]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[18]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[19]

Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022

[20]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 945-976. doi: 10.3934/dcdsb.2021076

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]