Citation: |
[1] |
F. Castella and S. Madec, Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates, J. Math. Biol., 68 (2014), 377-415.doi: 10.1007/s00285-012-0633-7. |
[2] |
L. Dung and H. L. Smith, A parabolic system modeling microbial competition in an unmixed bio-reactor, J. Differential Equations, 130 (1996), 59-91.doi: 10.1006/jdeq.1996.0132. |
[3] |
G. Guo, J. H. Wu and Y. Wang, Bifurcation from a double eigenvalue in the unstirred chemostat, Appl. Anal., 92 (2013), 1449-1461.doi: 10.1080/00036811.2012.683786. |
[4] |
P. Hess, Periodic Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Harlow, UK, 1991. |
[5] |
S. B. Hsu, H. L. Smith and P. Waltman, Dynamics of competition in the unstirred Chemostat, Canad. Appl. Math. Quart., 2 (1994), 461-483. |
[6] |
S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.doi: 10.1137/0153051. |
[7] |
V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near a degenerate limit, SIAM J. Math. Anal., 35 (2003), 453-491.doi: 10.1137/S0036141002402189. |
[8] |
Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Differential Equations, 230 (2006), 720-742.doi: 10.1016/j.jde.2006.04.005. |
[9] |
H. Nie and J. H. Wu, Positive solutions of a competition model for two resources in the unstirred chemostat, J. Math. Anal. Appl., 355 (2009), 231-242.doi: 10.1016/j.jmaa.2009.01.045. |
[10] |
H. Nie and J. H. Wu, Uniqueness and stability for coexistence solutions of the unstirred chemostat model, Appl. Anal., 89 (2010), 1141-1159.doi: 10.1080/00036811003717954. |
[11] |
H. Nie and J. H. Wu, The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat, Discrete Contin. Dyn. Syst., 32 (2012), 303-329.doi: 10.3934/dcds.2012.32.303. |
[12] |
H. Nie and J. H. Wu, Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin, European J. Appl. Math., 25 (2014), 481-510.doi: 10.1017/S0956792514000096. |
[13] |
H. Nie, W. Xie and J. H. Wu, Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor, Comm. Pure Appl. Anal., 12 (2013), 1279-1297.doi: 10.3934/cpaa.2013.12.1279. |
[14] |
T. Kato, Perturbation Theory of Linear Operators, Springer, Berlin, 1966. |
[15] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs 41, American Mathematical Society, Providence, RI, 1995. |
[16] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511530043. |
[17] |
J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat, Appl. Math. Comput., 32 (1989), 169-183.doi: 10.1016/0096-3003(89)90092-1. |
[18] |
H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.doi: 10.1007/BF00173267. |
[19] |
J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835.doi: 10.1016/S0362-546X(98)00250-8. |
[20] |
J. H. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Math. Anal., 38 (2007), 1860-1885.doi: 10.1137/050627514. |
[21] |
J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat, J. Differential Equations, 172 (2001), 300-332.doi: 10.1006/jdeq.2000.3870. |