Citation: |
[1] |
H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.doi: 10.1016/0022-0396(88)90156-8. |
[2] |
A. Anma and K. Sakamoto, Turing type mechanisms for linear diffusion systems under non-diagonal Robin boundary conditions, SIAM Journal on Mathematical Analysis, 45 (2013), 3611-3628.doi: 10.1137/130908270. |
[3] |
J. M. Arrieta, A. N. Carvalho and A. Rodríguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions, J. Differential Equations, 168 (2000), 33-59.doi: 10.1006/jdeq.2000.3876. |
[4] |
G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numerical Func. Anal. Opt., 25 (2004), 321-348.doi: 10.1081/NFA-120039655. |
[5] |
H. Levine and W.-J. Rappel, Membrane-bound Turing patterns, Physical Review E, 72 (2005), 061912, 5pp.doi: 10.1103/PhysRevE.72.061912. |
[6] |
J. D. Murray, Mathematical Biology, Biomathematics Texts, Springer-Verlag Berlin Heidelberg, 1989.doi: 10.1007/978-3-662-08539-4. |
[7] |
Alan M. Turing, The chemical basis for morphogenesis, Phil. Trans. R. Soc. London, B 273 (1952), 37-72. |
[8] |
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995. |