# American Institute of Mathematical Sciences

May  2016, 21(3): 837-847. doi: 10.3934/dcdsb.2016.21.837

## A revisit to the diffusive logistic model with free boundary condition

 1 School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China 2 Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7

Received  February 2015 Revised  July 2015 Published  January 2016

This short paper revisits a free boundary problem which is used to describe the spreading of a new or invasive species. Our main goal is to understand how the underlying long-time dynamical behaviors response to the initial data. To this end, we parameterize the initial function as $u_0=\sigma\phi^*$, where $\sigma$ is regarded as a variable parameter and $\phi^*$ is a given function. Our main result suggests that when the diffusion rate is small, the species can persist in the long run (called spreading) for any $\sigma>0$; while if the diffusion rate is large, the species will go to extinction finally (called vanishing) for small $\sigma>0$. Maybe of more interest is that for some intermediate diffusion rates, there appears a sharp threshold value $\sigma^*\in(0, \infty)$ such that vanishing happens provided $0<\sigma\leq\sigma^*$ and spreading happens provided $\sigma>\sigma^*$. This result can be seen as an improvement of Theorem 1.2 in [8].
Citation: Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837
##### References:

show all references

##### References:
 [1] Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007 [2] Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 [3] Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317 [4] Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583 [5] Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256 [6] Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4721-4736. doi: 10.3934/dcdsb.2020121 [7] Alan E. Lindsay, Michael J. Ward. An asymptotic analysis of the persistence threshold for the diffusive logistic model in spatial environments with localized patches. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1139-1179. doi: 10.3934/dcdsb.2010.14.1139 [8] Qiaoling Chen, Fengquan Li, Feng Wang. A diffusive logistic problem with a free boundary in time-periodic environment: Favorable habitat or unfavorable habitat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 13-35. doi: 10.3934/dcdsb.2016.21.13 [9] Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 [10] Yihong Du, Zhigui Lin. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3105-3132. doi: 10.3934/dcdsb.2014.19.3105 [11] Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011 [12] Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213 [13] Kazuaki Taira. A mathematical study of diffusive logistic equations with mixed type boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021166 [14] Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713 [15] Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199 [16] Xuejun Pan, Hongying Shu, Yuming Chen. Dirichlet problem for a diffusive logistic population model with two delays. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3139-3155. doi: 10.3934/dcdss.2020134 [17] Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182 [18] Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067 [19] Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021145 [20] Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253

2020 Impact Factor: 1.327

## Metrics

• HTML views (0)
• Cited by (4)

• on AIMS