\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global stability of a multi-group model with generalized nonlinear incidence and vaccination age

Abstract Related Papers Cited by
  • A multi-group epidemic model with general nonlinear incidence and vaccination age structure has been formulated and studied. Mathematical analysis shows that the global stability of disease-free equilibrium and endemic equilibrium of the model are determined by the basic reproduction number $\mathcal{R}_0$: the disease-free equilibrium is globally asymptotically stable if $\mathcal{R}_0<1$, the endemic equilibrium is globally asymptotically stable if $\mathcal{R}_0>1$. The Lyapunov functionals for the global dynamics of the multi-group model are constructed by applying the theory of non-negative matrices and a novel grouping technique in estimating the derivative.
    Mathematics Subject Classification: Primary: 92D25, 92D30; Secondary: 35B35, 37B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Q. Li, Y. L. Yang and Y. C. Zhou, Global stability of an epidemic model with latent stage and vaccination, Nonlinear Anal.: Real World Appl., 12 (2011), 2163-2173.doi: 10.1016/j.nonrwa.2010.12.030.

    [2]

    S. M. Blower and A. R. McLean, Prophylactic vaccines, risk behavior change, and the probability of eradicating HIV in San Francisco, Science, 265 (1994), 1451-1454.doi: 10.1126/science.8073289.

    [3]

    Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model, Nonlinear Anal.: Real World Appl., 11 (2010), 4154-4163.doi: 10.1016/j.nonrwa.2010.05.002.

    [4]

    X. Y. Song, Y. Jiang and H. M. Wei, Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays, Appl. Math. Comput., 214 (2009), 381-390.doi: 10.1016/j.amc.2009.04.005.

    [5]

    D. Q. Ding and X. H. Ding, Global stability of multi-group vaccination epidemic models with delays, Nonlinear Anal.: Real World Appl., 12 (2011), 1991-1997.doi: 10.1016/j.nonrwa.2010.12.015.

    [6]

    G. P. Sahu and J. Dhar, Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate, Appl. Math. Model., 36 (2012), 908-923.doi: 10.1016/j.apm.2011.07.044.

    [7]

    F. Hoppensteadt, An age-dependent epidemic model, J. Franklin Inst., 297 (1974), 325-333.doi: 10.1016/0016-0032(74)90037-4.

    [8]

    F. Hoppensteadt, Mathematical Theories of Populations: Demographics, Genetics and Epiemics, SIAM Publications, Philadelphia, 1975.doi: 10.1137/1.9781611970487.

    [9]

    M. Iannelli, M. Martcheva and X. Z. Li, Strain replacement in an epidemic model with super-infection and perfect vaccination, Math. Biosci., 195 (2005), 23-46.doi: 10.1016/j.mbs.2005.01.004.

    [10]

    X. Z. Li, J. Wang and M. Ghosh, Stability and bifurcation of an SIVS epidemic model with treatment and age of vaccination, Appl. Math. Model., 34 (2010), 437-450.doi: 10.1016/j.apm.2009.06.002.

    [11]

    X. C. Duan, S. L. Yuan and X. Z. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput., 226 (2014), 528-540.doi: 10.1016/j.amc.2013.10.073.

    [12]

    G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker. New York, 1985.

    [13]

    P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Diff. Equs., 65 (2001), 1-35.

    [14]

    Z. Liu, P. Magal and S. Ruan, Center-unstable manfold theorem for non-densely defined Cauchy problem, and the stability of bifurcation periodic orbits by Hopf bifurcation, Canadian Applied Mathematics Quarterly, 20 (2012), 135-178.

    [15]

    P. Magal, C. C. McCluske and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis, 89 (2010), 1109-1140.doi: 10.1080/00036810903208122.

    [16]

    H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118. American Mathematical Society, Providence, RI, 2011.doi: 10.1090/gsm/118.

    [17]

    G. S. Wolkowicz, H. Xia and S. Ruan, Competition in the chemostat: A distributed delay model and its global asymptotic behavior, SIAM J. Appl. Math., 57 (1997), 1281-1310.doi: 10.1137/S0036139995289842.

    [18]

    R. Y. Sun and J. P. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 280-286.doi: 10.1016/j.amc.2011.05.056.

    [19]

    H. Chen and J. T. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 4391-4400.doi: 10.1016/j.amc.2011.10.015.

    [20]

    T. Kuniya, Global stability of a multi-group SVIR epidemic model, Nonlinear Anal.: Real World Appl., 14 (2013), 1135-1143.doi: 10.1016/j.nonrwa.2012.09.004.

    [21]

    H. Y. Shu, D. J. Fan and J. J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal.: Real World Appl., 13 (2012), 1581-1592.doi: 10.1016/j.nonrwa.2011.11.016.

    [22]

    H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canad. Appl. Math. Quart., 14 (2006), 259-284.

    [23]

    H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793-2802.doi: 10.1090/S0002-9939-08-09341-6.

    [24]

    M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248 (2010), 1-20.doi: 10.1016/j.jde.2009.09.003.

    [25]

    H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413-2430.doi: 10.3934/dcdsb.2012.17.2413.

    [26]

    A. Berman and R. J. Plemmons, Nonnegative Matrices in Mathematical Science, Academic Press, New York, 1979.

    [27]

    J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.

    [28]

    H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set, J. Dyn. Differ. Equat., 6 (1994), 583-600.

    [29]

    M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191-213.doi: 10.1016/S0025-5564(99)00030-9.

    [30]

    N. P. Bhatia and G. P. Szego, Dynamical Systems: Stability Theory and Applications, Lecture Notes in Mathematics, vol. 35, Springer, Berlin, 1967.

    [31]

    H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511530043.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(272) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return