American Institute of Mathematical Sciences

May  2016, 21(3): 997-1008. doi: 10.3934/dcdsb.2016.21.997

Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients

 1 Department of Mathematics, Zhaoqing University, Zhaoqing, 526061 2 College of Mathematics and Informatics, South China Agricultural University, Guangzhou, Guangdong 510642, China 3 School of Mathematics and Statistics, Zhaoqing University, Zhaoqing, Guangdong 526061, China

Received  July 2015 Revised  September 2015 Published  January 2016

In this paper we study a free boundary problem for the growth of avascular tumors. The establishment of the model is based on the diffusion of nutrient and mass conservation for the two process proliferation and apoptosis(cell death due to aging). It is assumed the supply of external nutrients is periodic. We mainly study the long time behavior of the solution, and prove that in the case $c$ is sufficiently small, the volume of the tumor cannot expand unlimitedly. It will either disappear or evolve to a positive periodic state.
Citation: Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997
References:
 [1] R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumor growth: The contribution of mathematical modeling, Bull.Math.Biol., 66 (2004), 1039-1091. doi: 10.1016/j.bulm.2003.11.002. [2] M. Bai and S. Xu, Qualitative analysis of a mathematical model for tumor growth with a periodic supply of external nutrients, Pacific J. Appl. Math., 5 (2013), 217-223. [3] M. Bodnar and U. Foryś, Time delay in necrotic core formation, Math. Biosci. Eng., 2 (2005), 461-472. doi: 10.3934/mbe.2005.2.461. [4] H. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosci., 144 (1997), 83-117. doi: 10.1016/S0025-5564(97)00023-0. [5] H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181. doi: 10.1016/0025-5564(94)00117-3. [6] H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135 (1996), 187-216. doi: 10.1016/0025-5564(96)00023-5. [7] H. M. Byrne et al., Modelling aspects of cancer dynamics: A review, Trans. Royal Soc. A, 364 (2006), 1563-1578. doi: 10.1098/rsta.2006.1786. [8] S. Cui, Analysis of a mathematical model for the growth of tumors under the action of external inhibitors, J. Math. Biol., 44 (2002), 395-426. doi: 10.1007/s002850100130. [9] S. Cui, Fromation of necrotic cores in the growth of tumors: Analytic results, Aata. Math. Scientia., 26 (2006), 781-796. doi: 10.1016/S0252-9602(06)60104-5. [10] S. Cui and A. Friedman, Analysis of a mathematical model of the effact of inhibitors on the growth of tumors, Math. Biosci., 164 (2000), 103-137. doi: 10.1016/S0025-5564(99)00063-2. [11] S. Cui, Analysis of a free boundary problem modeling tumor growth, Acta. Math. Sinica., 21 (2005), 1071-1082. doi: 10.1007/s10114-004-0483-3. [12] S. Cui and S. Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation, J. Math. Anal. Appl., 336 (2007), 523-541. doi: 10.1016/j.jmaa.2007.02.047. [13] M. Dorie, R. Kallman, D. Rapacchietta and et al, Migration and internalization of cells and polystrene microspheres in tumor cell sphereoids, Exp. Cell Res., 141 (1982), 201-209. doi: 10.1016/0014-4827(82)90082-9. [14] R. Eftimie, J. L. Bramson and D. J. D. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull Math. Biol., 73 (2011), 2-32. doi: 10.1007/s11538-010-9526-3. [15] J. Folkman and M. Hochberg, Self-Regulation of growth in three dimensions, J. Exp. Med., 138 (1973), 745-753. doi: 10.1084/jem.138.4.745. [16] U. Foryś and M. Bodnar, Time delays in proliferation process for solid avascular tumour, Math. Comput. Modelling, 37 (2003), 1201-1209. doi: 10.1016/S0895-7177(03)80019-5. [17] U. Foryś and A. Mokwa-Borkowska, Solid tumour growth analysis of necrotic core formation, Math. Comput. Modelling, 42 (2005), 593-600. doi: 10.1016/j.mcm.2004.06.022. [18] U. Foryś and M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour, Mathematical Modelling of Population Dynamics, 63 (2004), 187-196. [19] A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: 10.1007/s002850050149. [20] H. Greenspan, Models for the growth of solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317-340. doi: 10.1002/sapm1972514317. [21] H. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242. doi: 10.1016/S0022-5193(76)80054-9. [22] J. Nagy, The ecology and evolutionary biology of cancer: A review of mathematical models of necrosis and tumor cell diversity, Math.Biosci. Eng., 2 (2005), 381-418. doi: 10.3934/mbe.2005.2.381. [23] M. J. Piotrowska, Hopf bifurcation in a solid asascular tumor growth model with two discrete delays, Math. and Compu. Modeling, 47 (2008), 597-603. doi: 10.1016/j.mcm.2007.02.030. [24] F. A. Rihan and D. H. Abdel Rahman,et al., A time delay model of tumour-immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, Appl. Math. Comput., 232 (2014), 606-623. doi: 10.1016/j.amc.2014.01.111. [25] J. Ward and J. King, Mathematical modelling of avascular-tumor growth II: Modelling growth saturation, IMA J. Math. Appl. Med. Biol., 16 (1999), 171-211. doi: 10.1093/imammb16.2.171. [26] J. Wu and F. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling the growth of tumors with fluid-like tissue under the action of inhibitors, Trans. Amer. Math. Soc., 365 (2013), 4181-4207. doi: 10.1090/S0002-9947-2013-05779-0. [27] X. Wei and S. Cui, Existence and uniqueniss of global solutions of a free boundary problem modeling tumor growth (in chinese), Math. Acta. Scientia., 26 (2006), 1-8. [28] S. Xu, Analysis of tumor growth under direct effect ofinhibitors with time delays in proliferation, Nonlinear Anal. RWA, 11 (2010), 401-406. doi: 10.1016/j.nonrwa.2008.11.002. [29] S. Xu, Analysis of a delayed free boundary problem for tumor growth, Discrete & Contin. Dyn. Syst. B., 15 (2011), 293-308. doi: 10.3934/dcdsb.2011.15.293. [30] S. Xu, Qualitative analysis of a delayed free boundary problem for tumor growth under the effect of inhibitors, Nonlinear Anal.: TMA, 74 (2011), 3295-3304. doi: 10.1016/j.na.2011.02.006. [31] S. Xu, M. Bai and X. Q. Zhao, Analysis of a solid avascular tumor growth model with time delays in proliferation process, J. Math. Anal. Appl., 391 (2012), 38-47. doi: 10.1016/j.jmaa.2012.02.034. [32] F. Zhou and J. Wu, Analyticity of solutions to a multidimensional moving boundary problem modelling tumour growth, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1317-1336. doi: 10.1017/S0308210510001423.

show all references

References:
 [1] R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumor growth: The contribution of mathematical modeling, Bull.Math.Biol., 66 (2004), 1039-1091. doi: 10.1016/j.bulm.2003.11.002. [2] M. Bai and S. Xu, Qualitative analysis of a mathematical model for tumor growth with a periodic supply of external nutrients, Pacific J. Appl. Math., 5 (2013), 217-223. [3] M. Bodnar and U. Foryś, Time delay in necrotic core formation, Math. Biosci. Eng., 2 (2005), 461-472. doi: 10.3934/mbe.2005.2.461. [4] H. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosci., 144 (1997), 83-117. doi: 10.1016/S0025-5564(97)00023-0. [5] H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181. doi: 10.1016/0025-5564(94)00117-3. [6] H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135 (1996), 187-216. doi: 10.1016/0025-5564(96)00023-5. [7] H. M. Byrne et al., Modelling aspects of cancer dynamics: A review, Trans. Royal Soc. A, 364 (2006), 1563-1578. doi: 10.1098/rsta.2006.1786. [8] S. Cui, Analysis of a mathematical model for the growth of tumors under the action of external inhibitors, J. Math. Biol., 44 (2002), 395-426. doi: 10.1007/s002850100130. [9] S. Cui, Fromation of necrotic cores in the growth of tumors: Analytic results, Aata. Math. Scientia., 26 (2006), 781-796. doi: 10.1016/S0252-9602(06)60104-5. [10] S. Cui and A. Friedman, Analysis of a mathematical model of the effact of inhibitors on the growth of tumors, Math. Biosci., 164 (2000), 103-137. doi: 10.1016/S0025-5564(99)00063-2. [11] S. Cui, Analysis of a free boundary problem modeling tumor growth, Acta. Math. Sinica., 21 (2005), 1071-1082. doi: 10.1007/s10114-004-0483-3. [12] S. Cui and S. Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation, J. Math. Anal. Appl., 336 (2007), 523-541. doi: 10.1016/j.jmaa.2007.02.047. [13] M. Dorie, R. Kallman, D. Rapacchietta and et al, Migration and internalization of cells and polystrene microspheres in tumor cell sphereoids, Exp. Cell Res., 141 (1982), 201-209. doi: 10.1016/0014-4827(82)90082-9. [14] R. Eftimie, J. L. Bramson and D. J. D. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull Math. Biol., 73 (2011), 2-32. doi: 10.1007/s11538-010-9526-3. [15] J. Folkman and M. Hochberg, Self-Regulation of growth in three dimensions, J. Exp. Med., 138 (1973), 745-753. doi: 10.1084/jem.138.4.745. [16] U. Foryś and M. Bodnar, Time delays in proliferation process for solid avascular tumour, Math. Comput. Modelling, 37 (2003), 1201-1209. doi: 10.1016/S0895-7177(03)80019-5. [17] U. Foryś and A. Mokwa-Borkowska, Solid tumour growth analysis of necrotic core formation, Math. Comput. Modelling, 42 (2005), 593-600. doi: 10.1016/j.mcm.2004.06.022. [18] U. Foryś and M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour, Mathematical Modelling of Population Dynamics, 63 (2004), 187-196. [19] A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: 10.1007/s002850050149. [20] H. Greenspan, Models for the growth of solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317-340. doi: 10.1002/sapm1972514317. [21] H. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242. doi: 10.1016/S0022-5193(76)80054-9. [22] J. Nagy, The ecology and evolutionary biology of cancer: A review of mathematical models of necrosis and tumor cell diversity, Math.Biosci. Eng., 2 (2005), 381-418. doi: 10.3934/mbe.2005.2.381. [23] M. J. Piotrowska, Hopf bifurcation in a solid asascular tumor growth model with two discrete delays, Math. and Compu. Modeling, 47 (2008), 597-603. doi: 10.1016/j.mcm.2007.02.030. [24] F. A. Rihan and D. H. Abdel Rahman,et al., A time delay model of tumour-immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, Appl. Math. Comput., 232 (2014), 606-623. doi: 10.1016/j.amc.2014.01.111. [25] J. Ward and J. King, Mathematical modelling of avascular-tumor growth II: Modelling growth saturation, IMA J. Math. Appl. Med. Biol., 16 (1999), 171-211. doi: 10.1093/imammb16.2.171. [26] J. Wu and F. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling the growth of tumors with fluid-like tissue under the action of inhibitors, Trans. Amer. Math. Soc., 365 (2013), 4181-4207. doi: 10.1090/S0002-9947-2013-05779-0. [27] X. Wei and S. Cui, Existence and uniqueniss of global solutions of a free boundary problem modeling tumor growth (in chinese), Math. Acta. Scientia., 26 (2006), 1-8. [28] S. Xu, Analysis of tumor growth under direct effect ofinhibitors with time delays in proliferation, Nonlinear Anal. RWA, 11 (2010), 401-406. doi: 10.1016/j.nonrwa.2008.11.002. [29] S. Xu, Analysis of a delayed free boundary problem for tumor growth, Discrete & Contin. Dyn. Syst. B., 15 (2011), 293-308. doi: 10.3934/dcdsb.2011.15.293. [30] S. Xu, Qualitative analysis of a delayed free boundary problem for tumor growth under the effect of inhibitors, Nonlinear Anal.: TMA, 74 (2011), 3295-3304. doi: 10.1016/j.na.2011.02.006. [31] S. Xu, M. Bai and X. Q. Zhao, Analysis of a solid avascular tumor growth model with time delays in proliferation process, J. Math. Anal. Appl., 391 (2012), 38-47. doi: 10.1016/j.jmaa.2012.02.034. [32] F. Zhou and J. Wu, Analyticity of solutions to a multidimensional moving boundary problem modelling tumour growth, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1317-1336. doi: 10.1017/S0308210510001423.
 [1] Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625 [2] Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045 [3] Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75 [4] Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669 [5] Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019 [6] Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 [7] Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423 [8] Xiaofeng Ren. Shell structure as solution to a free boundary problem from block copolymer morphology. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 979-1003. doi: 10.3934/dcds.2009.24.979 [9] Junde Wu. Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3399-3411. doi: 10.3934/dcds.2019140 [10] Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 [11] Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 [12] Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160 [13] Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053 [14] Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure and Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795 [15] Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001 [16] Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253 [17] Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1 [18] Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230 [19] Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737 [20] Yuan Wu, Jin Liang, Bei Hu. A free boundary problem for defaultable corporate bond with credit rating migration risk and its asymptotic behavior. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1043-1058. doi: 10.3934/dcdsb.2019207

2021 Impact Factor: 1.497

Metrics

• HTML views (0)
• Cited by (6)

• on AIMS