July  2016, 21(5): 1421-1434. doi: 10.3934/dcdsb.2016003

Free boundary problem of Barenblatt equation in stochastic control

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

2. 

School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, China

Received  January 2014 Revised  March 2014 Published  April 2016

The following type of parabolic Barenblatt equations
                                           min {$\partial_t V - \mathcal{L}_1 V, \partial_t V-\mathcal{L}_2 V$} = 0
is studied, where $\mathcal{L}_1$ and $\mathcal{L}_2$ are different elliptic operators of second order. The (unknown) free boundary of the problem is a divisional curve, which is the optimal insured boundary in our stochastic control problem. It will be proved that the free boundary is a differentiable curve.
    To the best of our knowledge, this is the first result on free boundary for Barenblatt Equation. We will establish the model and verification theorem by the use of stochastic analysis. The existence of classical solution to the HJB equation and the differentiability of free boundary are obtained by PDE techniques.
Citation: Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003
References:
[1]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.

[2]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. doi: 10.1007/978-3-642-61798-0.

[3]

S. Kamin, L. A. Peletier and J. L. Vazquez, On the Barenblatt equation of elasto-plastic filtration, Indiana Math. J., 40 (1991), 1333-1362. doi: 10.1512/iumj.1991.40.40060.

[4]

D. Kelome and A. Swiech, Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation, Appl Math Optim., 47 (2003), 253-278. doi: 10.1007/s00245-003-0764-8.

[5]

A. Kolesnichenko and G. Shopina, Valuation of Portfolios Under Uncertain Volatility: Black-Scholes Barenblatt Equations and the Static Hedging, {Technical report, IDE0739}, November 14, 2007.

[6]

N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nayk SSSR, 47 (1983), 75-108.

[7]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1967.

[8]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996. doi: 10.1142/3302.

[9]

H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-89500-8.

[10]

J. Rochet and S. Villeneuve, Liquidity management and coporate demand for hedging and insurance, J. Finan. Intermediation, 20 (2011), 303-323.

[11]

S. E. Shreve, Stochastic Calculus for Finance II, Springer, 2004.

[12]

T. Vargiolu, Existence, Uniqueness and Smoothness for the Black-Scholes-Barenblatt Equation, Technical Report of the Department of Pure and Appl. Math. of the University of Padava, 2001.

show all references

References:
[1]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964.

[2]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. doi: 10.1007/978-3-642-61798-0.

[3]

S. Kamin, L. A. Peletier and J. L. Vazquez, On the Barenblatt equation of elasto-plastic filtration, Indiana Math. J., 40 (1991), 1333-1362. doi: 10.1512/iumj.1991.40.40060.

[4]

D. Kelome and A. Swiech, Viscosity solutions of an infinite-dimensional Black-Scholes-Barenblatt equation, Appl Math Optim., 47 (2003), 253-278. doi: 10.1007/s00245-003-0764-8.

[5]

A. Kolesnichenko and G. Shopina, Valuation of Portfolios Under Uncertain Volatility: Black-Scholes Barenblatt Equations and the Static Hedging, {Technical report, IDE0739}, November 14, 2007.

[6]

N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nayk SSSR, 47 (1983), 75-108.

[7]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1967.

[8]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996. doi: 10.1142/3302.

[9]

H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-89500-8.

[10]

J. Rochet and S. Villeneuve, Liquidity management and coporate demand for hedging and insurance, J. Finan. Intermediation, 20 (2011), 303-323.

[11]

S. E. Shreve, Stochastic Calculus for Finance II, Springer, 2004.

[12]

T. Vargiolu, Existence, Uniqueness and Smoothness for the Black-Scholes-Barenblatt Equation, Technical Report of the Department of Pure and Appl. Math. of the University of Padava, 2001.

[1]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control and Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[2]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control and Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[3]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[4]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[5]

Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks and Heterogeneous Media, 2012, 7 (4) : 605-615. doi: 10.3934/nhm.2012.7.605

[6]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[7]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[8]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[9]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations and Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[10]

Chonghu Guan, Xun Li, Zuo Quan Xu, Fahuai Yi. A stochastic control problem and related free boundaries in finance. Mathematical Control and Related Fields, 2017, 7 (4) : 563-584. doi: 10.3934/mcrf.2017021

[11]

Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control and Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020

[12]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[13]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[14]

Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569

[15]

Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations and Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017

[16]

Lorena Bociu, Lucas Castle, Kristina Martin, Daniel Toundykov. Optimal control in a free boundary fluid-elasticity interaction. Conference Publications, 2015, 2015 (special) : 122-131. doi: 10.3934/proc.2015.0122

[17]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[18]

Silvia Faggian. Boundary control problems with convex cost and dynamic programming in infinite dimension part II: Existence for HJB. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 323-346. doi: 10.3934/dcds.2005.12.323

[19]

Enrique Fernández-Cara, Juan Límaco, Laurent Prouvée. Optimal control of a two-equation model of radiotherapy. Mathematical Control and Related Fields, 2018, 8 (1) : 117-133. doi: 10.3934/mcrf.2018005

[20]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (170)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]