July  2016, 21(5): 1469-1481. doi: 10.3934/dcdsb.2016007

Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

LAboratory of Mathematical Parallel Systems (LAMPS), Centre for Disease Modeling, Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3

Received  February 2016 Revised  March 2016 Published  April 2016

To capture the impact of spatial heterogeneity of environment and available resource of the public health system on the persistence and extinction of the infectious disease, a simplified spatial SIS reaction-diffusion model with allocation and use efficiency of the medical resource is proposed. A nonlinear space dependent recovery rate is introduced to model impact of available public health resource on the transmission dynamics of the disease. The basic reproduction numbers associated with the diseases in the spatial setting are defined, and then the low, moderate and high risks of the environment are classified. Our results show that the complicated dynamical behaviors of the system are induced by the variation of the use efficiency of medical resources, which suggests that maintaining appropriate number of public health resources and well management are important to control and prevent the temporal-spatial spreading of the infectious disease. The numerical simulations are presented to illustrate the impact of the use efficiency of medical resources on the control of the spreading of infectious disease.
Citation: Jing Ge, Zhigui Lin, Huaiping Zhu. Environmental risks in a diffusive SIS model incorporating use efficiency of the medical resource. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1469-1481. doi: 10.3934/dcdsb.2016007
References:
[1]

L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1.

[2]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, UK, 1991.

[3]

R. Boaden, N. Proudlove and M. Wilson, An exploratory study of bed management, J. Manag. Med., 13 (2006), 234-250. doi: 10.1108/02689239910292945.

[4]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, 2011. doi: 10.1007/978-1-4614-1686-9.

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd, 2003. doi: 10.1002/0470871296.

[6]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases. Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, West Sussex, England, 2000.

[7]

J. Ge, K. I. Kim, Z. G. Lin and H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509. doi: 10.1016/j.jde.2015.06.035.

[8]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics, vol. 247. Longman Sci. Tech., Harlow, 1991.

[9]

W. Huang, M. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math Biosci Eng., 7 (2010), 51-66. doi: 10.3934/mbe.2010.7.51.

[10]

S. B. Jiang, L. Lu and L. Y. Du, Development of SARS vaccines and therapeutics is still needed, Future Virology, 8 (2013), 1-2. doi: 10.2217/fvl.12.126.

[11]

K. I. Kim and Z. G. Lin, Asymptotic behavior of an SEI epidemic model with diffusion, Math. Comput. Modelling, 47 (2008), 1314-1322. doi: 10.1016/j.mcm.2007.08.004.

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer.Math. Soc, Providence, RI, 1968.

[13]

C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. Real World Appl., 25 (2015), 64-78. doi: 10.1016/j.nonrwa.2015.05.003.

[14]

R. Peng, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model, I, J. Differential Equations, 247 (2009), 1096-1119. doi: 10.1016/j.jde.2009.05.002.

[15]

R. Peng and F. Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25. doi: 10.1016/j.physd.2013.05.006.

[16]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.

[17]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[18]

C. H. Shan and H. P. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, J. Differential Equations, 257 (2014), 1662-1688. doi: 10.1016/j.jde.2014.05.030.

[19]

C. H. Shan, Y. F. Yi and H. P. Zhu, Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources, J. of Differential Equations, 260 (2016), 4339-4365. doi: 10.1016/j.jde.2015.11.009.

[20]

Q. L. Tang, J. Ge and Z. G. Lin, An SEI-SI avian-human influenza model with diffusion and nonlocal delay, Appl. Math. Comput., 247 (2014), 753-761. doi: 10.1016/j.amc.2014.09.042.

[21]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[22]

H. Wan and H. Zhu, The backward bifurcation in compartmental models for West Nile virus, Math. Biosci., 227 (2010), 20-28. doi: 10.1016/j.mbs.2010.05.006.

[23]

J. Zhou and H. W. Hethcote, Population size dependent incidence in models for diseases without immunity, J. Math. Bio., 32 (1994), 809-834. doi: 10.1007/BF00168799.

[24]

, World Health Organization, World Health Statistics 2005-2011.

[25]

"Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003"., World Health Organization (WHO). http://www.who.int/csr/sars/country/table2004_04_21/en/

[26]

, http://www.who.int/management/facility/hospital/en/index6.html.

show all references

References:
[1]

L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1.

[2]

R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, UK, 1991.

[3]

R. Boaden, N. Proudlove and M. Wilson, An exploratory study of bed management, J. Manag. Med., 13 (2006), 234-250. doi: 10.1108/02689239910292945.

[4]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, 2011. doi: 10.1007/978-1-4614-1686-9.

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd, 2003. doi: 10.1002/0470871296.

[6]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases. Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, West Sussex, England, 2000.

[7]

J. Ge, K. I. Kim, Z. G. Lin and H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509. doi: 10.1016/j.jde.2015.06.035.

[8]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics, vol. 247. Longman Sci. Tech., Harlow, 1991.

[9]

W. Huang, M. Han and K. Liu, Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math Biosci Eng., 7 (2010), 51-66. doi: 10.3934/mbe.2010.7.51.

[10]

S. B. Jiang, L. Lu and L. Y. Du, Development of SARS vaccines and therapeutics is still needed, Future Virology, 8 (2013), 1-2. doi: 10.2217/fvl.12.126.

[11]

K. I. Kim and Z. G. Lin, Asymptotic behavior of an SEI epidemic model with diffusion, Math. Comput. Modelling, 47 (2008), 1314-1322. doi: 10.1016/j.mcm.2007.08.004.

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer.Math. Soc, Providence, RI, 1968.

[13]

C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. Real World Appl., 25 (2015), 64-78. doi: 10.1016/j.nonrwa.2015.05.003.

[14]

R. Peng, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model, I, J. Differential Equations, 247 (2009), 1096-1119. doi: 10.1016/j.jde.2009.05.002.

[15]

R. Peng and F. Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25. doi: 10.1016/j.physd.2013.05.006.

[16]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.

[17]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[18]

C. H. Shan and H. P. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, J. Differential Equations, 257 (2014), 1662-1688. doi: 10.1016/j.jde.2014.05.030.

[19]

C. H. Shan, Y. F. Yi and H. P. Zhu, Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources, J. of Differential Equations, 260 (2016), 4339-4365. doi: 10.1016/j.jde.2015.11.009.

[20]

Q. L. Tang, J. Ge and Z. G. Lin, An SEI-SI avian-human influenza model with diffusion and nonlocal delay, Appl. Math. Comput., 247 (2014), 753-761. doi: 10.1016/j.amc.2014.09.042.

[21]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[22]

H. Wan and H. Zhu, The backward bifurcation in compartmental models for West Nile virus, Math. Biosci., 227 (2010), 20-28. doi: 10.1016/j.mbs.2010.05.006.

[23]

J. Zhou and H. W. Hethcote, Population size dependent incidence in models for diseases without immunity, J. Math. Bio., 32 (1994), 809-834. doi: 10.1007/BF00168799.

[24]

, World Health Organization, World Health Statistics 2005-2011.

[25]

"Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003"., World Health Organization (WHO). http://www.who.int/csr/sars/country/table2004_04_21/en/

[26]

, http://www.who.int/management/facility/hospital/en/index6.html.

[1]

Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134

[2]

Chengxia Lei, Fujun Li, Jiang Liu. Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4499-4517. doi: 10.3934/dcdsb.2018173

[3]

Siyao Zhu, Jinliang Wang. Analysis of a diffusive SIS epidemic model with spontaneous infection and a linear source in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1999-2019. doi: 10.3934/dcdsb.2020013

[4]

Lian Duan, Lihong Huang, Chuangxia Huang. Spatial dynamics of a diffusive SIRI model with distinct dispersal rates and heterogeneous environment. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3539-3560. doi: 10.3934/cpaa.2021120

[5]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173

[6]

Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176

[7]

Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001

[8]

Rong Zou, Shangjiang Guo. Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4189-4210. doi: 10.3934/dcdsb.2020093

[9]

Xuan Tian, Shangjiang Guo, Zhisu Liu. Qualitative analysis of a diffusive SEIR epidemic model with linear external source and asymptomatic infection in heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3053-3075. doi: 10.3934/dcdsb.2021173

[10]

Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2783-2804. doi: 10.3934/jimo.2020094

[11]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[12]

Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016

[13]

Claude-Michel Brauner, Danaelle Jolly, Luca Lorenzi, Rodolphe Thiebaut. Heterogeneous viral environment in a HIV spatial model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 545-572. doi: 10.3934/dcdsb.2011.15.545

[14]

Mariusz Bodzioch, Marcin Choiński, Urszula Foryś. SIS criss-cross model of tuberculosis in heterogeneous population. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2169-2188. doi: 10.3934/dcdsb.2019089

[15]

Wonlyul Ko, Inkyung Ahn, Shengqiang Liu. Asymptotical behaviors of a general diffusive consumer-resource model with maturation delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1715-1733. doi: 10.3934/dcdsb.2015.20.1715

[16]

Taige Wang, Dihong Xu. A quantitative strong unique continuation property of a diffusive SIS model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1599-1614. doi: 10.3934/dcdss.2022024

[17]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[18]

Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114

[19]

Yongli Cai, Weiming Wang. Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 989-1013. doi: 10.3934/dcdsb.2015.20.989

[20]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5519-5549. doi: 10.3934/dcdsb.2020357

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (198)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]