Advanced Search
Article Contents
Article Contents

Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations

Abstract Related Papers Cited by
  • In this paper we present a new proof for the interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations, whose prototype is the $p$-Laplace equation.
    Mathematics Subject Classification: 35J20, 35J60, 35J92.


    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd edition), Academic Press, New York, 2003.


    S. Byun, F. Yao and S. Zhou, Gradient Estimates in Orlicz space for nonlinear elliptic Equations, J. Funct. Anal., 255 (2008), 1851-1873.doi: 10.1016/j.jfa.2008.09.007.


    L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1989), 189-213.doi: 10.2307/1971480.


    Y. Chen and L. Wu, Second Order Elliptic Partial Differential Equations and Elliptic Systems, American Mathematical Society, Providence, RI, 1998.


    A. Cianchi and V. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations, Comm. Partial Differential Equations, 36 (2011), 100-133.doi: 10.1080/03605301003657843.


    E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.doi: 10.1016/0362-546X(83)90061-5.


    F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincaré, 27 (2010), 1361-1396.doi: 10.1016/j.anihpc.2010.07.002.


    F. Duzaar and G. Mingione, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., 259 (2010), 2961-2998.doi: 10.1016/j.jfa.2010.08.006.


    L. C. Evans, A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373.doi: 10.1016/0022-0396(82)90033-X.


    M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983.


    D. Gilbarg and N. Trudinger, Elliptic Partial Diferential Equations of Second Order (3rd edition), Springer-Verlag, Berlin, 1998.


    J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858.doi: 10.1512/iumj.1983.32.32058.


    G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.doi: 10.1080/03605309108820761.


    J. Malý, D. Swanson and W. Ziemer, Fine behavior of functions whose gradients are in an Orlicz space, Studia Math., 190 (2009), 33-71.doi: 10.4064/sm190-1-2.


    M. Shaw and L. Wang, Hölder and Lp estimates for Db on CR manifolds of arbitrary codimension, Math. Ann., 331 (2005), 297-343.doi: 10.1007/s00208-004-0583-5.


    P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.doi: 10.1016/0022-0396(84)90105-0.


    K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.doi: 10.1007/BF02392316.


    L. Wang, Compactness methods for certain degenerate elliptic equations, J. Differential Equations, 107 (1994), 341-350.doi: 10.1006/jdeq.1994.1016.


    L. Wang, Hölder estimates for subelliptic operators, J. Funct. Anal., 199 (2003), 228-242.doi: 10.1016/S0022-1236(03)00093-4.


    L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation, Proc. Amer. Math. Soc., 137 (2009), 2037-2047.doi: 10.1090/S0002-9939-09-09805-0.

  • 加载中

Article Metrics

HTML views() PDF downloads(247) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint