\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations

Abstract Related Papers Cited by
  • In this paper we present a new proof for the interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations, whose prototype is the $p$-Laplace equation.
    Mathematics Subject Classification: 35J20, 35J60, 35J92.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd edition), Academic Press, New York, 2003.

    [2]

    S. Byun, F. Yao and S. Zhou, Gradient Estimates in Orlicz space for nonlinear elliptic Equations, J. Funct. Anal., 255 (2008), 1851-1873.doi: 10.1016/j.jfa.2008.09.007.

    [3]

    L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math., 130 (1989), 189-213.doi: 10.2307/1971480.

    [4]

    Y. Chen and L. Wu, Second Order Elliptic Partial Differential Equations and Elliptic Systems, American Mathematical Society, Providence, RI, 1998.

    [5]

    A. Cianchi and V. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations, Comm. Partial Differential Equations, 36 (2011), 100-133.doi: 10.1080/03605301003657843.

    [6]

    E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.doi: 10.1016/0362-546X(83)90061-5.

    [7]

    F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincaré, 27 (2010), 1361-1396.doi: 10.1016/j.anihpc.2010.07.002.

    [8]

    F. Duzaar and G. Mingione, Gradient estimates via linear and nonlinear potentials, J. Funct. Anal., 259 (2010), 2961-2998.doi: 10.1016/j.jfa.2010.08.006.

    [9]

    L. C. Evans, A new proof of local $C^{1,\alpha}$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373.doi: 10.1016/0022-0396(82)90033-X.

    [10]

    M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983.

    [11]

    D. Gilbarg and N. Trudinger, Elliptic Partial Diferential Equations of Second Order (3rd edition), Springer-Verlag, Berlin, 1998.

    [12]

    J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858.doi: 10.1512/iumj.1983.32.32058.

    [13]

    G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.doi: 10.1080/03605309108820761.

    [14]

    J. Malý, D. Swanson and W. Ziemer, Fine behavior of functions whose gradients are in an Orlicz space, Studia Math., 190 (2009), 33-71.doi: 10.4064/sm190-1-2.

    [15]

    M. Shaw and L. Wang, Hölder and Lp estimates for Db on CR manifolds of arbitrary codimension, Math. Ann., 331 (2005), 297-343.doi: 10.1007/s00208-004-0583-5.

    [16]

    P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.doi: 10.1016/0022-0396(84)90105-0.

    [17]

    K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.doi: 10.1007/BF02392316.

    [18]

    L. Wang, Compactness methods for certain degenerate elliptic equations, J. Differential Equations, 107 (1994), 341-350.doi: 10.1006/jdeq.1994.1016.

    [19]

    L. Wang, Hölder estimates for subelliptic operators, J. Funct. Anal., 199 (2003), 228-242.doi: 10.1016/S0022-1236(03)00093-4.

    [20]

    L. Wang, F. Yao, S. Zhou and H. Jia, Optimal regularity for the poisson equation, Proc. Amer. Math. Soc., 137 (2009), 2037-2047.doi: 10.1090/S0002-9939-09-09805-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(247) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return