Citation: |
[1] |
C. N. Dawson, Q. Du and T. F. Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation, Math. Comp., 57 (1991), 63-71.doi: 10.1090/S0025-5718-1991-1079011-4. |
[2] |
M. Dryja, Substructuring methods for parabolic problems, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations(Moscow,1990), SIAM, Philadelphia, PA, (1991), 264-271. |
[3] |
S. Gunter and K. Lackner, A mixed implicit-explicit finite difference scheme for heat transport in magnetized plasmas, Journal of Computational Physics, 228 (2009), 282-293. |
[4] |
E. Jamelot and P. C. Jr, Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation, Journal of Computational Physics, 241 (2013), 445-463.doi: 10.1016/j.jcp.2013.01.026. |
[5] |
Yu. M. Laevsky and O. V. Rudenko, Splitting methods for parabolic problems in nonrectangular domains, Appl. Math. Lett., 8 (1995), 9-14.doi: 10.1016/0893-9659(95)00077-4. |
[6] |
H. L. Liao, H. S. Shi and Z. Z. Sun, Corrected explicit-implicit domain decomposition algorithms for two-dimensional semilinear parabolic equations, Science in China Series A: Mathematics, 52 (2009), 2362-2388.doi: 10.1007/s11425-009-0040-8. |
[7] |
P. H. Maire, R. Abgrall, J. Breil and J. Ovadia, A centered Lagrangian scheme for multidimensional compressible flow problems, SIAM Journal on Scientific Computing, 29 (2007), 1781-1824.doi: 10.1137/050633019. |
[8] |
J. E. Morel, R. M. Roberts and M. J. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral $r-z$ meshes, Journal of Computational Physics, 144 (1998), 17-51.doi: 10.1006/jcph.1998.5981. |
[9] |
S. Ovtchinnikov and X. C. Cai, One-level Newton-Krylov-Schwarz algorithm for unsteady non-linear radiation diffusion problem, Numerical Linear Algebra with Applications, 11 (2004), 867-881.doi: 10.1002/nla.386. |
[10] |
W. J. Rider and D. A. Knoll, Time step size selection for radiation diffusion calculations, Journal of Computational Physics, 152 (1999), 790-795.doi: 10.1006/jcph.1999.6266. |
[11] |
M. Shashkov, Conservative Finite Difference Methods, CRC Press, Boca Raton, FL, 1996. |
[12] |
Z. Q. Sheng, G. W. Yuan and X. D. Hang, Unconditional stability of parallel difference schemes with second order accuracy for parabolic equation, Applied Mathematics and Computation, 184 (2007), 1015-1031.doi: 10.1016/j.amc.2006.07.003. |
[13] |
A. Shestakov, J. Milovich and D. Kershaw, Parallelization of an unstructured-grid, laser fusion design code, SIAM News, 32 (1999), 6-10. |
[14] |
H. S. Shi and H. L. Liao, Unconditional stability of corrected explicit-implicit domain decomposition algorithms for parallel approximation of heat equations, SIAM J. Numer. Anal., 44 (2006), 1584-1611.doi: 10.1137/040609215. |
[15] |
A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory, Springer-Verlag, Berlin Heidelberg, 2005. |
[16] |
M. L. Wilkins, Computer Simulation of Dynamic Phenomena, Springer-Verlag, Berlin Heidelberg, 1999.doi: 10.1007/978-3-662-03885-7. |
[17] |
L. Yin, J. M. Wu and Y. Z. Yao, A cell functional minimization scheme for parabolic problem, Journal of Computational Physics, 229 (2010), 8935-8951.doi: 10.1016/j.jcp.2010.08.018. |
[18] |
G. W. Yuan, X. D. Hang and Z. Q. Sheng, Parallel difference schemes with interface extrapolation terms for quasi-linear parabolic systems, Science in China Series A: Mathematics, 50 (2007), 253-275.doi: 10.1007/s11425-007-0014-7. |
[19] |
G. W. Yuan and X. D. Hang, Conservative parallel schemes for diffusion equations, Chinese Journal of Computational Physics, 27 (2010), 475-491. |
[20] |
G. W. Yuan, L. G. Shen and Y. L. Zhou, Parallel Difference Schemes for Parabolic Problem, in Proceeding of 2002 5th International Conference on Algorithms and Architectures for Parallel Processing, IEEE Computer Society, (2002), 238-242. |
[21] |
G. W. Yuan, Y. Z. Yao and L. Yin, Conservative domain decomposition procedure for nonlinear diffusion problems on arbitrary quadrilateral grids, SIAM J. Sci. Comput., 33 (2011), 1352-1368.doi: 10.1137/10081335X. |
[22] |
G. W. Yuan and F. L. Zuo, Parallel differences schemes for heat conduction equations, International Journal of Computer Mathematics, 80 (2003), 995-999.doi: 10.1080/0020716031000087159. |
[23] |
J. Y. Yue and G. W. Yuan, Picard-Newton iterative method with time step control for multimaterial non-equilibrium radiation diffusion problem, Commun. Comput. Phys., 10 (2011), 844-866.doi: 10.4208/cicp.310110.161010a. |
[24] |
S. H. Zhu, Conservative domain decomposition procedure with unconditional stability and second-order accuracy, Applied Mathematics and Computation, 216 (2010), 3275-3282.doi: 10.1016/j.amc.2010.04.054. |
[25] |
Y. Zhuang and X. Sun, Stabilized explicit-implicit domain decomposition methods for the numerical solution of parabolic equations, SIAM J. Sci. Comput., 24 (2002), 335-358.doi: 10.1137/S1064827501384755. |