August  2016, 21(6): 1671-1687. doi: 10.3934/dcdsb.2016017

Some class of parabolic systems applied to image processing

1. 

Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, B.P. 523 Beni-Mellal, Morocco

2. 

Ecole Nationale des Sciences Appliquées de Sa , Université Cadi Ayyad, Route Sidi Bouzid B.P. 63, Safi, Morocco

3. 

Ecole Supérieure de Technologie d'Essaouira, Université Cadi Ayyad, B.P. 383 Essaouira El Jadida, Essaouira, Morocco, Morocco

Received  January 2015 Revised  May 2016 Published  June 2016

In this paper, we are interested in the mathematical and numerical study of a variational model derived as Reaction-Diffusion System for image denoising. We use a nonlinear regularization of total variation (TV) operator's, combined with a decomposition approach of $H^{-1}$ norm suggested by Guo and al. ([19],[20]). Based on Galerkin's method, we prove the existence and uniqueness of the solution on Orlicz space for the proposed model. At last, compared experimental results distinctly demonstrate the superiority of our model, in term of removing noise while preserving the edges and reducing staircase effect.
Citation: Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017
References:
[1]

R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874-882. doi: 10.1016/j.camwa.2008.01.017.

[2]

R. Adams, Sobolev Spaces, Ac. Press, New york, 1975.

[3]

L. Alvarez, P.-L. Lions and J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal, 29 (1992), 845-866. doi: 10.1137/0729052.

[4]

F. Andreu, C. Ballester, V. Caselles and J. L. Mazòn, Minimizing total variation flow, Differential Integral Equations, 14 (2001), 321-360.

[5]

A. Atlas, F. Karami and D. Meskine, The Perona-Malik inequality and application to image denoising, Nonlinear Anal. Real World Appl., 18 (2014), 57-68. doi: 10.1016/j.nonrwa.2013.11.006.

[6]

P. Blomgren, P. Mulet, T. Chan and C. Wong, Total variation image restoration: numerical methods and extensions, in: Proceeding of the 1997 IEEE International Conference on Image Processing, 3 (1997), 384-387. doi: 10.1109/ICIP.1997.632128.

[7]

H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann.Inst. Fourier, 18 (1968), 115-175. doi: 10.5802/aif.280.

[8]

Y. Cao, Yin, J. Liu, Qiang and M. Li, A class of nonlinear parabolic- hyperbolic equations applied to image restoration, Nonlinear Anal. Real World Appl., 11 (2010), 253-261. doi: 10.1016/j.nonrwa.2008.11.004.

[9]

F. Catté, P. L. Lions, J. M. Morel and T. Call, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), 182-193. doi: 10.1137/0729012.

[10]

A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188. doi: 10.1007/s002110050258.

[11]

T. F. Chan, S. Esedoglu and F. E. Park, A fourth order dual method for staircase reduction in texture extraction and image restoration problems, 2010 IEEE International Conference on Image Processing, (2010), 4137-4140. doi: 10.1109/ICIP.2010.5653199.

[12]

T. F. Chan, S. Esedoglu and F. E. Park, Image decomposition combining staircase reduction and texture extraction, Journal of Visual Communication and Image Representation, 18 (2007), 464-486. doi: 10.1016/j.jvcir.2006.12.004.

[13]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298. doi: 10.2307/2373376.

[14]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.

[15]

C. M. Eliot and S. A. Smitheman, Analysis of the TV regularization and $H^{-1}$ fidelity model for decomposing an image into cartoon plus texture, Commun. Pure Appl. Anal., 6 (2007), 917-936. doi: 10.3934/cpaa.2007.6.917.

[16]

A. Elmahi and D. Meskine, Parabolic equations in Orlicz spaces, J. London Math. Soc., (2) 72 (2005), 410-428. doi: 10.1112/S0024610705006630.

[17]

J. P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidely (or slowly) increasing coefficients, Trans. Amer. Math. Soc., 190 (1974), 163-205. doi: 10.1090/S0002-9947-1974-0342854-2.

[18]

J. P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74 (1982), 17-24.

[19]

Z. Guo, Q. Liu, J. Sun and B. Wu, Reaction-diffusion systems with $p(x)$-growth for image denoising, Nonlinear Anal. Real World Appl., 12 (2011), 2904-2918. doi: 10.1016/j.nonrwa.2011.04.015.

[20]

Z. Guo, J. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration, Math. Comput. Modelling, 53 (2011), 1336-1350. doi: 10.1016/j.mcm.2010.12.031.

[21]

P. Harjulehto, P.A. Hasto, V. Latvala, Minimizers of the variable exponent, non-uniformly convex Dirichlet energy, J. Math. Pures Appl., (9) 89 (2008), 174-197. doi: 10.1016/j.matpur.2007.10.006.

[22]

P. Hartman, Ordinary Differential Equations, 2nd edn. SIAM, Philidelphia, 2002. doi: 10.1137/1.9780898719222.

[23]

M. Krasnoselśkii and Ya. Rutickii, Convex Functions and Orlicz Spaces, Nodhoff Groningen, 1969.

[24]

A. Kufner, O. John and S. Fucík, Function Spaces, Academia, Prague, 1977.

[25]

R. Landes and V. Mustonen, A strongly nonlinear parabolic initial-boundary value problem, Ark. Mat., 25 (1987), 29-40. doi: 10.1007/BF02384435.

[26]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris 1969.

[27]

Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures, AMS, 2001. doi: 10.1090/ulect/022.

[28]

S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the $H^{-1}$ norm, Multiscale Model. Simul., 1 (2003), 349-370. doi: 10.1137/S1540345902416247.

[29]

P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE, Trans, Pattern anal. Match.Intell, 12 (1990), 629-639. doi: 10.1109/34.56205.

[30]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D , 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.

[31]

L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19 (2003), 553-572. doi: 10.1023/A:1025384832106.

[32]

J. Weickert, Anisotropic Diffusion in Image Processing, Teubner-Verlag, Stuttgart, Germany, 1998.

show all references

References:
[1]

R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874-882. doi: 10.1016/j.camwa.2008.01.017.

[2]

R. Adams, Sobolev Spaces, Ac. Press, New york, 1975.

[3]

L. Alvarez, P.-L. Lions and J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal, 29 (1992), 845-866. doi: 10.1137/0729052.

[4]

F. Andreu, C. Ballester, V. Caselles and J. L. Mazòn, Minimizing total variation flow, Differential Integral Equations, 14 (2001), 321-360.

[5]

A. Atlas, F. Karami and D. Meskine, The Perona-Malik inequality and application to image denoising, Nonlinear Anal. Real World Appl., 18 (2014), 57-68. doi: 10.1016/j.nonrwa.2013.11.006.

[6]

P. Blomgren, P. Mulet, T. Chan and C. Wong, Total variation image restoration: numerical methods and extensions, in: Proceeding of the 1997 IEEE International Conference on Image Processing, 3 (1997), 384-387. doi: 10.1109/ICIP.1997.632128.

[7]

H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann.Inst. Fourier, 18 (1968), 115-175. doi: 10.5802/aif.280.

[8]

Y. Cao, Yin, J. Liu, Qiang and M. Li, A class of nonlinear parabolic- hyperbolic equations applied to image restoration, Nonlinear Anal. Real World Appl., 11 (2010), 253-261. doi: 10.1016/j.nonrwa.2008.11.004.

[9]

F. Catté, P. L. Lions, J. M. Morel and T. Call, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), 182-193. doi: 10.1137/0729012.

[10]

A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188. doi: 10.1007/s002110050258.

[11]

T. F. Chan, S. Esedoglu and F. E. Park, A fourth order dual method for staircase reduction in texture extraction and image restoration problems, 2010 IEEE International Conference on Image Processing, (2010), 4137-4140. doi: 10.1109/ICIP.2010.5653199.

[12]

T. F. Chan, S. Esedoglu and F. E. Park, Image decomposition combining staircase reduction and texture extraction, Journal of Visual Communication and Image Representation, 18 (2007), 464-486. doi: 10.1016/j.jvcir.2006.12.004.

[13]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298. doi: 10.2307/2373376.

[14]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.

[15]

C. M. Eliot and S. A. Smitheman, Analysis of the TV regularization and $H^{-1}$ fidelity model for decomposing an image into cartoon plus texture, Commun. Pure Appl. Anal., 6 (2007), 917-936. doi: 10.3934/cpaa.2007.6.917.

[16]

A. Elmahi and D. Meskine, Parabolic equations in Orlicz spaces, J. London Math. Soc., (2) 72 (2005), 410-428. doi: 10.1112/S0024610705006630.

[17]

J. P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidely (or slowly) increasing coefficients, Trans. Amer. Math. Soc., 190 (1974), 163-205. doi: 10.1090/S0002-9947-1974-0342854-2.

[18]

J. P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74 (1982), 17-24.

[19]

Z. Guo, Q. Liu, J. Sun and B. Wu, Reaction-diffusion systems with $p(x)$-growth for image denoising, Nonlinear Anal. Real World Appl., 12 (2011), 2904-2918. doi: 10.1016/j.nonrwa.2011.04.015.

[20]

Z. Guo, J. Yin and Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration, Math. Comput. Modelling, 53 (2011), 1336-1350. doi: 10.1016/j.mcm.2010.12.031.

[21]

P. Harjulehto, P.A. Hasto, V. Latvala, Minimizers of the variable exponent, non-uniformly convex Dirichlet energy, J. Math. Pures Appl., (9) 89 (2008), 174-197. doi: 10.1016/j.matpur.2007.10.006.

[22]

P. Hartman, Ordinary Differential Equations, 2nd edn. SIAM, Philidelphia, 2002. doi: 10.1137/1.9780898719222.

[23]

M. Krasnoselśkii and Ya. Rutickii, Convex Functions and Orlicz Spaces, Nodhoff Groningen, 1969.

[24]

A. Kufner, O. John and S. Fucík, Function Spaces, Academia, Prague, 1977.

[25]

R. Landes and V. Mustonen, A strongly nonlinear parabolic initial-boundary value problem, Ark. Mat., 25 (1987), 29-40. doi: 10.1007/BF02384435.

[26]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris 1969.

[27]

Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures, AMS, 2001. doi: 10.1090/ulect/022.

[28]

S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the $H^{-1}$ norm, Multiscale Model. Simul., 1 (2003), 349-370. doi: 10.1137/S1540345902416247.

[29]

P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE, Trans, Pattern anal. Match.Intell, 12 (1990), 629-639. doi: 10.1109/34.56205.

[30]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D , 60 (1992), 259-268. doi: 10.1016/0167-2789(92)90242-F.

[31]

L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19 (2003), 553-572. doi: 10.1023/A:1025384832106.

[32]

J. Weickert, Anisotropic Diffusion in Image Processing, Teubner-Verlag, Stuttgart, Germany, 1998.

[1]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4963-4998. doi: 10.3934/dcdsb.2020321

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319

[4]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks and Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[5]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[6]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[7]

Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103

[8]

Elena Beretta, Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-diffusion equation. Inverse Problems and Imaging, 2011, 5 (2) : 285-296. doi: 10.3934/ipi.2011.5.285

[9]

Peter E. Kloeden, Thomas Lorenz. Pullback attractors of reaction-diffusion inclusions with space-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1909-1964. doi: 10.3934/dcdsb.2017114

[10]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[11]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[12]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure and Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[13]

Xin Li, Xingfu Zou. On a reaction-diffusion model for sterile insect release method with release on the boundary. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2509-2522. doi: 10.3934/dcdsb.2012.17.2509

[14]

Mihaela Negreanu, J. Ignacio Tello. On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2669-2688. doi: 10.3934/dcdsb.2013.18.2669

[15]

Zhiguang Zhang, Qiang Liu, Tianling Gao. A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. Inverse Problems and Imaging, 2021, 15 (6) : 1451-1469. doi: 10.3934/ipi.2021018

[16]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[17]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032

[18]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[19]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[20]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (331)
  • HTML views (0)
  • Cited by (13)

[Back to Top]