\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Approximate controllability of discrete semilinear systems and applications

Abstract Related Papers Cited by
  • In this paper we study the approximate controllability of the following semilinear difference equation \[ z(n+1)=A(n)z(n)+B(n)u(n)+f(n,z(n),u(n)), \quad n\in \mathbb{N}^*, \] $z(n)\in Z$, $u(n)\in U$, where $Z$, $U$ are Hilbert spaces, $A\in l^{\infty}(\mathbb{N},L(Z))$, $B\in l^{\infty}(\mathbb{N},L(U,Z))$, $u\in l^2(\mathbb{N},U)$ and the nonlinear term $f:\mathbb{N} \times Z\times U\longrightarrow Z$ is a suitable function. We prove that, under some conditions on the nonlinear term $f$, the approximate controllability of the linear equation is preserved. Finally, we apply this result to a discrete version of the semilinear wave equation.
    Mathematics Subject Classification: Primary: 93B05; Secondary: 93C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. E. Bashirov and K. R. Kerimov, On controllability conception for stochastic systems, SIAM Journal on Control and Optimization, 35 (1997), 384-398.doi: 10.1137/S0363012994260970.

    [2]

    A. E. Bashirov and N. I. Mahmudov, On Controllability of deterministic and stochastic systems, SIAM Journal on Control and Optimization, 37 (1999), 1808-1821.doi: 10.1137/S036301299732184X.

    [3]

    A. E. Bashirov, N. Mahmudov, N. Semi and H. Etikan, Partial controllability concepts, Iternational Journal of Control, 80 (2007), 1-7.doi: 10.1080/00207170600885489.

    [4]

    A. E. Bashirov and N. I. Mahmudov, Partial controllability of stochastic linear systems, International Journal of Control, 83 (2010), 2564-2572.doi: 10.1080/00207179.2010.532570.

    [5]

    A. E. Bashirov and N. Ghahramanlou, On Partial approximate controllability of semilinear systems, Cogent Engineering, 1 (2014), 965947.doi: 10.1080/23311916.2014.965947.

    [6]

    A. E. Bashirov and N. Ghahramanlou, On Partial S-controllability of semilinear partially observable Systems, International Journal of Control, 88 (2015), 969-982.doi: 10.1080/00207179.2014.986763.

    [7]

    R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems, Lecture Notes in Control and Information Sciences, 8, (1978), Springer Verlag, Berlin.

    [8]

    R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Text in Applied Mathematics, 21 (1995), Springer Verlag, New York.doi: 10.1007/978-1-4612-4224-6.

    [9]

    S. N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces, J. Differential Equations, 120 (1995), 429-477.doi: 10.1006/jdeq.1995.1117.

    [10]

    D. Henry, Geometry Theory of Semilinear Parabolic Equations, Lectures Notes in Mathematics, 840 (1981) Springer Verlag, Berlin.

    [11]

    H. R. Henriquez and C. Cuevas, Approximate controllability of abstract discrete-time systems, Advances in Difference Equations,840 (2010), Article ID 695290, 17 pages.doi: 10.1155/2010/695290.

    [12]

    V. Lakshmikanthan and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Mathematics in Science and Engineering, 1998.

    [13]

    H. Leiva, A Lemma on $C_{0}$-semigroups and applications PDEs systems, Quaestions Mathematicae, 26 (2003), 247-265.doi: 10.2989/16073600309486057.

    [14]

    H. Leiva and J. Uzcategui, Exact controlllability for semilinear difference equation and application J. Difference Equ. Appl.,14 (2008), 671-679.doi: 10.1080/10236190701726170.

    [15]

    H. Leiva and J. Uzcategui, Controllability of linear difference equations in Hilbert Spaces and applications, IMA Journal of Math. Control and Information, 25 (2008), 323-340.doi: 10.1093/imamci/dnm027.

    [16]

    H. Leiva and J. Uzcátegui, Approximate controllability of semilinear difference equations and applications, Journal Mathematical Control Science and Applications (JMCSA), 4 (2011), 9-19.

    [17]

    M. Megan, A. L. Sasu and B. Sasu, On approximate controllability of systems associated to linear skew product semiflows, Analele Univ. I. Cuza, Iasi, 47 (2001), 379-388.

    [18]

    M. Megan, A. L. Sasu and B. Sasu, Stabilizability and controllability of systems associated to linear skew product semiflows, Rev. Mat. Complut., 15 (2002), 599-618.doi: 10.5209/rev_REMA.2002.v15.n2.16932.

    [19]

    A. L. Sasu and B. Sasu, Stability and stabilizability for linear systems of difference equations, J. Difference Equ. Appl., 10 (2004), 1085-1105.doi: 10.1080/10236190412331314178.

    [20]

    A. L. Sasu, Stabilizability and controllability for systems of difference equations, J. Difference Equ. Appl.,12 (2006), 821-826.doi: 10.1080/10236190600734218.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(180) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return