August  2016, 21(6): 1813-1837. doi: 10.3934/dcdsb.2016024

Continuum approximations for pulses generated by impulsive initial data in binary exciton chain systems

1. 

Department of Mathematics, College of Charleston, 66 George St. Charleston, SC 29424, United States

Received  April 2015 Revised  February 2016 Published  June 2016

Systems of ODE's with forms related to the discrete nonlinear Schrödinger equation arise in a variety of semi-classical molecular models, such as models of polymers with coupling between nearby excitable states, and reductions of quantum many-body systems. Similar systems also arise as models of arrays of nonlinear optical wave-guides, which can involve new features such as binary alternation of coefficients: so-called Binary Exciton Chain Systems.
    Solutions of such systems are often seen to develop regions of slow variation even when the initial data are impulsive: in particular the emergence of a slowly varying leading pulse that propagates in an approximately traveling wave form, and in stationary oscillations near the endpoints. This has motivated the search for long-wave approximations by PDEs.
    In this article it is observed that the patterns of slow variation are substantially different from those assumed in some previously-considered long-wave approximations, and several new PDE approximations are presented: third order systems describing leading pulses of approximately traveling wave form (related to the Airy PDE in the linearized case), and a quite different system describing stationary oscillations near an endpoint with zero boundary conditions. Numerical solutions of these PDE models and some linear analysis confirm that they provide a good agreement with the long-wave phenomena observed in the ODE systems.
Citation: Brenton LeMesurier. Continuum approximations for pulses generated by impulsive initial data in binary exciton chain systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1813-1837. doi: 10.3934/dcdsb.2016024
References:
[1]

A. B. Aceves, A. Auditore, M. Conforti and C. De Angelis, Discrete localized modes in binary waveguide arrays, in Nonlinear Photonics (NLP), 2013 IEEE International Workshop, 2013, 38-42. doi: 10.1109/NLP.2013.6646384.

[2]

A. Auditore, M. Conforti, C. De Angelis and A. B. Aceves, Dark-antidark solitons in waveguide arrays with alternating positive-negative couplings, Optics Communications, 297 (2013), 125-128, URL http://www.sciencedirect.com/science/article/pii/S0030401813001545. doi: 10.1016/j.optcom.2013.01.068.

[3]

L. Brizhik, A. Eremko, L. Cruzeiro-Hansson and Y. Olkhovska, Soliton dynamics and Peierls-Nabarro barrier in a discrete molecular chain, Physical Review B, 61 (2000), p1129. doi: 10.1103/PhysRevB.61.1129.

[4]

M. Conforti, C. De Angelis and T. R. Akylas, Energy localization and transport in binary waveguide arrays, Physical Review A, 83 (2011), 043822. doi: 10.1103/PhysRevA.83.043822.

[5]

M. Conforti, C. De Angelis, T. R. Akylas and A. B. Aceves, Modulational stability and gap solitons of gapless systems: Continuous versus discrete, Physical Review A, 85 (2012), 063836. doi: 10.1103/PhysRevA.85.063836.

[6]

M. Creutz and A. Gocksch, Higher order hybrid Monte-Carlo algorithms, Phys. Rev. Lett., 63 (1989), 9-12. doi: 10.1103/PhysRevLett.63.9.

[7]

A. S. Davydov, Theory of Molecular Excitations, Plenum press, New York, 1971.

[8]

A. S. Davydov, Solitons in molecular systems, Physica Scripta, 20 (1979), 387-394. doi: 10.1088/0031-8949/20/3-4/013.

[9]

A. S. Davydov, Solitons in Molecular Systems, Kluwer Academic Publishers, Dordrecht, 1991. doi: 10.1007/978-94-011-3340-1.

[10]

J. Eilbeck, P. Lomdahl and A. Scott, The discrete self-trapping equation, Physica D: Nonlinear Phenomena, 16 (1985), 318-338, URL http://www.sciencedirect.com/science/article/pii/0167278985900120. doi: 10.1016/0167-2789(85)90012-0.

[11]

E. Forest, Canonical integrators as tracking codes, AIP Conference Proceedings, 184 (1989), 1106-1136.

[12]

I. L. Garanovich, A. A. Sukhorukov and Y. S. Kivshar, Surface multi-gap vector solitons, Optics Express, 14 (2006), 4780-4785. doi: 10.1364/OE.14.004780.

[13]

O. Gonzales, Time integration and discrete Hamiltonian systems, Journal of Nonlinear Science, 6 (1996), 449-467. doi: 10.1007/BF02440162.

[14]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer, 2006.

[15]

T. Holstein, Studies of polaron motion: Part I. the molecular-crystal model, Ann. Phys., 8 (1959), 325-389.

[16]

B. LeMesurier, Studying Davydov's ODE model of wave motion in alpha-helix protein using exactly energy-momentum conserving discretizations for Hamiltonian systems, Mathematics and Computers in Simulation, 82 (2012), 1239-1248, Published online 30 December 2010. doi: 10.1016/j.matcom.2010.11.017.

[17]

B. LeMesurier, Energetic pulses in exciton-phonon molecular chains, and conservative numerical methods for quasi-linear Hamiltonian systems, Physical Review E, 88 (2013), 032707, URL http://arxiv.org/abs/1301.2996.

[18]

R. I. McLachlin, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM Journal of Scientific Computation, 16 (1995), 151-168. doi: 10.1137/0916010.

[19]

D. Pelinovsky and V. Rothos, Bifurcations of travelling wave solutions in the discrete NLS equation, Physica D, 202 (2005), 16-36. doi: 10.1016/j.physd.2005.01.016.

[20]

A. C. Scott, The vibrational structure of Davydov solitons, Physica Scripta, 25 (1982), 651-658. doi: 10.1088/0031-8949/25/5/015.

[21]

A. C. Scott, Davydov's soliton, Physics Reports, 217 (1992), 1-67.

[22]

A. A. Sukhorukov and Y. S. Kivshar, Discrete gap solitons in modulated waveguide arrays, Opt. Lett., 27 (2002), 2112-2114. doi: 10.1364/NLGW.2002.NLTuA2.

[23]

M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations, Phys. Lett. A, 146 (1990), 319-323. doi: 10.1016/0375-9601(90)90962-N.

[24]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268. doi: 10.1016/0375-9601(90)90092-3.

show all references

References:
[1]

A. B. Aceves, A. Auditore, M. Conforti and C. De Angelis, Discrete localized modes in binary waveguide arrays, in Nonlinear Photonics (NLP), 2013 IEEE International Workshop, 2013, 38-42. doi: 10.1109/NLP.2013.6646384.

[2]

A. Auditore, M. Conforti, C. De Angelis and A. B. Aceves, Dark-antidark solitons in waveguide arrays with alternating positive-negative couplings, Optics Communications, 297 (2013), 125-128, URL http://www.sciencedirect.com/science/article/pii/S0030401813001545. doi: 10.1016/j.optcom.2013.01.068.

[3]

L. Brizhik, A. Eremko, L. Cruzeiro-Hansson and Y. Olkhovska, Soliton dynamics and Peierls-Nabarro barrier in a discrete molecular chain, Physical Review B, 61 (2000), p1129. doi: 10.1103/PhysRevB.61.1129.

[4]

M. Conforti, C. De Angelis and T. R. Akylas, Energy localization and transport in binary waveguide arrays, Physical Review A, 83 (2011), 043822. doi: 10.1103/PhysRevA.83.043822.

[5]

M. Conforti, C. De Angelis, T. R. Akylas and A. B. Aceves, Modulational stability and gap solitons of gapless systems: Continuous versus discrete, Physical Review A, 85 (2012), 063836. doi: 10.1103/PhysRevA.85.063836.

[6]

M. Creutz and A. Gocksch, Higher order hybrid Monte-Carlo algorithms, Phys. Rev. Lett., 63 (1989), 9-12. doi: 10.1103/PhysRevLett.63.9.

[7]

A. S. Davydov, Theory of Molecular Excitations, Plenum press, New York, 1971.

[8]

A. S. Davydov, Solitons in molecular systems, Physica Scripta, 20 (1979), 387-394. doi: 10.1088/0031-8949/20/3-4/013.

[9]

A. S. Davydov, Solitons in Molecular Systems, Kluwer Academic Publishers, Dordrecht, 1991. doi: 10.1007/978-94-011-3340-1.

[10]

J. Eilbeck, P. Lomdahl and A. Scott, The discrete self-trapping equation, Physica D: Nonlinear Phenomena, 16 (1985), 318-338, URL http://www.sciencedirect.com/science/article/pii/0167278985900120. doi: 10.1016/0167-2789(85)90012-0.

[11]

E. Forest, Canonical integrators as tracking codes, AIP Conference Proceedings, 184 (1989), 1106-1136.

[12]

I. L. Garanovich, A. A. Sukhorukov and Y. S. Kivshar, Surface multi-gap vector solitons, Optics Express, 14 (2006), 4780-4785. doi: 10.1364/OE.14.004780.

[13]

O. Gonzales, Time integration and discrete Hamiltonian systems, Journal of Nonlinear Science, 6 (1996), 449-467. doi: 10.1007/BF02440162.

[14]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer, 2006.

[15]

T. Holstein, Studies of polaron motion: Part I. the molecular-crystal model, Ann. Phys., 8 (1959), 325-389.

[16]

B. LeMesurier, Studying Davydov's ODE model of wave motion in alpha-helix protein using exactly energy-momentum conserving discretizations for Hamiltonian systems, Mathematics and Computers in Simulation, 82 (2012), 1239-1248, Published online 30 December 2010. doi: 10.1016/j.matcom.2010.11.017.

[17]

B. LeMesurier, Energetic pulses in exciton-phonon molecular chains, and conservative numerical methods for quasi-linear Hamiltonian systems, Physical Review E, 88 (2013), 032707, URL http://arxiv.org/abs/1301.2996.

[18]

R. I. McLachlin, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM Journal of Scientific Computation, 16 (1995), 151-168. doi: 10.1137/0916010.

[19]

D. Pelinovsky and V. Rothos, Bifurcations of travelling wave solutions in the discrete NLS equation, Physica D, 202 (2005), 16-36. doi: 10.1016/j.physd.2005.01.016.

[20]

A. C. Scott, The vibrational structure of Davydov solitons, Physica Scripta, 25 (1982), 651-658. doi: 10.1088/0031-8949/25/5/015.

[21]

A. C. Scott, Davydov's soliton, Physics Reports, 217 (1992), 1-67.

[22]

A. A. Sukhorukov and Y. S. Kivshar, Discrete gap solitons in modulated waveguide arrays, Opt. Lett., 27 (2002), 2112-2114. doi: 10.1364/NLGW.2002.NLTuA2.

[23]

M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations, Phys. Lett. A, 146 (1990), 319-323. doi: 10.1016/0375-9601(90)90962-N.

[24]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268. doi: 10.1016/0375-9601(90)90092-3.

[1]

Yavar Kian. Stability of the determination of a coefficient for wave equations in an infinite waveguide. Inverse Problems and Imaging, 2014, 8 (3) : 713-732. doi: 10.3934/ipi.2014.8.713

[2]

Lianbing She, Mirelson M. Freitas, Mauricio S. Vinhote, Renhai Wang. Existence and approximation of attractors for nonlinear coupled lattice wave equations. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021272

[3]

Alexandre N. Carvalho, Jan W. Cholewa. NLS-like equations in bounded domains: Parabolic approximation procedure. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 57-77. doi: 10.3934/dcdsb.2018005

[4]

Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054

[5]

Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136

[6]

Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756

[7]

Scipio Cuccagna. Orbitally but not asymptotically stable ground states for the discrete NLS. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 105-134. doi: 10.3934/dcds.2010.26.105

[8]

Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227

[9]

Panayotis Panayotaros, Felipe Rivero. Multistability and localized attractors in a dissipative discrete NLS equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1137-1154. doi: 10.3934/dcdsb.2014.19.1137

[10]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[11]

E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure and Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457

[12]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[13]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[14]

Anudeep Kumar Arora. Scattering of radial data in the focusing NLS and generalized Hartree equations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6643-6668. doi: 10.3934/dcds.2019289

[15]

Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063

[16]

Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053

[17]

Shujuan Lü, Zeting Liu, Zhaosheng Feng. Hermite spectral method for Long-Short wave equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 941-964. doi: 10.3934/dcdsb.2018255

[18]

H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119

[19]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[20]

H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]