-
Previous Article
Renormalized solutions to a reaction-diffusion system applied to image denoising
- DCDS-B Home
- This Issue
-
Next Article
Approximate controllability of discrete semilinear systems and applications
Continuum approximations for pulses generated by impulsive initial data in binary exciton chain systems
1. | Department of Mathematics, College of Charleston, 66 George St. Charleston, SC 29424, United States |
  Solutions of such systems are often seen to develop regions of slow variation even when the initial data are impulsive: in particular the emergence of a slowly varying leading pulse that propagates in an approximately traveling wave form, and in stationary oscillations near the endpoints. This has motivated the search for long-wave approximations by PDEs.
  In this article it is observed that the patterns of slow variation are substantially different from those assumed in some previously-considered long-wave approximations, and several new PDE approximations are presented: third order systems describing leading pulses of approximately traveling wave form (related to the Airy PDE in the linearized case), and a quite different system describing stationary oscillations near an endpoint with zero boundary conditions. Numerical solutions of these PDE models and some linear analysis confirm that they provide a good agreement with the long-wave phenomena observed in the ODE systems.
References:
[1] |
A. B. Aceves, A. Auditore, M. Conforti and C. De Angelis, Discrete localized modes in binary waveguide arrays, in Nonlinear Photonics (NLP), 2013 IEEE International Workshop, 2013, 38-42.
doi: 10.1109/NLP.2013.6646384. |
[2] |
A. Auditore, M. Conforti, C. De Angelis and A. B. Aceves, Dark-antidark solitons in waveguide arrays with alternating positive-negative couplings, Optics Communications, 297 (2013), 125-128, URL http://www.sciencedirect.com/science/article/pii/S0030401813001545.
doi: 10.1016/j.optcom.2013.01.068. |
[3] |
L. Brizhik, A. Eremko, L. Cruzeiro-Hansson and Y. Olkhovska, Soliton dynamics and Peierls-Nabarro barrier in a discrete molecular chain, Physical Review B, 61 (2000), p1129.
doi: 10.1103/PhysRevB.61.1129. |
[4] |
M. Conforti, C. De Angelis and T. R. Akylas, Energy localization and transport in binary waveguide arrays, Physical Review A, 83 (2011), 043822.
doi: 10.1103/PhysRevA.83.043822. |
[5] |
M. Conforti, C. De Angelis, T. R. Akylas and A. B. Aceves, Modulational stability and gap solitons of gapless systems: Continuous versus discrete, Physical Review A, 85 (2012), 063836.
doi: 10.1103/PhysRevA.85.063836. |
[6] |
M. Creutz and A. Gocksch, Higher order hybrid Monte-Carlo algorithms, Phys. Rev. Lett., 63 (1989), 9-12.
doi: 10.1103/PhysRevLett.63.9. |
[7] |
A. S. Davydov, Theory of Molecular Excitations, Plenum press, New York, 1971. |
[8] |
A. S. Davydov, Solitons in molecular systems, Physica Scripta, 20 (1979), 387-394.
doi: 10.1088/0031-8949/20/3-4/013. |
[9] |
A. S. Davydov, Solitons in Molecular Systems, Kluwer Academic Publishers, Dordrecht, 1991.
doi: 10.1007/978-94-011-3340-1. |
[10] |
J. Eilbeck, P. Lomdahl and A. Scott, The discrete self-trapping equation, Physica D: Nonlinear Phenomena, 16 (1985), 318-338, URL http://www.sciencedirect.com/science/article/pii/0167278985900120.
doi: 10.1016/0167-2789(85)90012-0. |
[11] |
E. Forest, Canonical integrators as tracking codes, AIP Conference Proceedings, 184 (1989), 1106-1136. |
[12] |
I. L. Garanovich, A. A. Sukhorukov and Y. S. Kivshar, Surface multi-gap vector solitons, Optics Express, 14 (2006), 4780-4785.
doi: 10.1364/OE.14.004780. |
[13] |
O. Gonzales, Time integration and discrete Hamiltonian systems, Journal of Nonlinear Science, 6 (1996), 449-467.
doi: 10.1007/BF02440162. |
[14] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer, 2006. |
[15] |
T. Holstein, Studies of polaron motion: Part I. the molecular-crystal model, Ann. Phys., 8 (1959), 325-389. |
[16] |
B. LeMesurier, Studying Davydov's ODE model of wave motion in alpha-helix protein using exactly energy-momentum conserving discretizations for Hamiltonian systems, Mathematics and Computers in Simulation, 82 (2012), 1239-1248, Published online 30 December 2010.
doi: 10.1016/j.matcom.2010.11.017. |
[17] |
B. LeMesurier, Energetic pulses in exciton-phonon molecular chains, and conservative numerical methods for quasi-linear Hamiltonian systems, Physical Review E, 88 (2013), 032707, URL http://arxiv.org/abs/1301.2996. |
[18] |
R. I. McLachlin, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM Journal of Scientific Computation, 16 (1995), 151-168.
doi: 10.1137/0916010. |
[19] |
D. Pelinovsky and V. Rothos, Bifurcations of travelling wave solutions in the discrete NLS equation, Physica D, 202 (2005), 16-36.
doi: 10.1016/j.physd.2005.01.016. |
[20] |
A. C. Scott, The vibrational structure of Davydov solitons, Physica Scripta, 25 (1982), 651-658.
doi: 10.1088/0031-8949/25/5/015. |
[21] |
A. C. Scott, Davydov's soliton, Physics Reports, 217 (1992), 1-67. |
[22] |
A. A. Sukhorukov and Y. S. Kivshar, Discrete gap solitons in modulated waveguide arrays, Opt. Lett., 27 (2002), 2112-2114.
doi: 10.1364/NLGW.2002.NLTuA2. |
[23] |
M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations, Phys. Lett. A, 146 (1990), 319-323.
doi: 10.1016/0375-9601(90)90962-N. |
[24] |
H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268.
doi: 10.1016/0375-9601(90)90092-3. |
show all references
References:
[1] |
A. B. Aceves, A. Auditore, M. Conforti and C. De Angelis, Discrete localized modes in binary waveguide arrays, in Nonlinear Photonics (NLP), 2013 IEEE International Workshop, 2013, 38-42.
doi: 10.1109/NLP.2013.6646384. |
[2] |
A. Auditore, M. Conforti, C. De Angelis and A. B. Aceves, Dark-antidark solitons in waveguide arrays with alternating positive-negative couplings, Optics Communications, 297 (2013), 125-128, URL http://www.sciencedirect.com/science/article/pii/S0030401813001545.
doi: 10.1016/j.optcom.2013.01.068. |
[3] |
L. Brizhik, A. Eremko, L. Cruzeiro-Hansson and Y. Olkhovska, Soliton dynamics and Peierls-Nabarro barrier in a discrete molecular chain, Physical Review B, 61 (2000), p1129.
doi: 10.1103/PhysRevB.61.1129. |
[4] |
M. Conforti, C. De Angelis and T. R. Akylas, Energy localization and transport in binary waveguide arrays, Physical Review A, 83 (2011), 043822.
doi: 10.1103/PhysRevA.83.043822. |
[5] |
M. Conforti, C. De Angelis, T. R. Akylas and A. B. Aceves, Modulational stability and gap solitons of gapless systems: Continuous versus discrete, Physical Review A, 85 (2012), 063836.
doi: 10.1103/PhysRevA.85.063836. |
[6] |
M. Creutz and A. Gocksch, Higher order hybrid Monte-Carlo algorithms, Phys. Rev. Lett., 63 (1989), 9-12.
doi: 10.1103/PhysRevLett.63.9. |
[7] |
A. S. Davydov, Theory of Molecular Excitations, Plenum press, New York, 1971. |
[8] |
A. S. Davydov, Solitons in molecular systems, Physica Scripta, 20 (1979), 387-394.
doi: 10.1088/0031-8949/20/3-4/013. |
[9] |
A. S. Davydov, Solitons in Molecular Systems, Kluwer Academic Publishers, Dordrecht, 1991.
doi: 10.1007/978-94-011-3340-1. |
[10] |
J. Eilbeck, P. Lomdahl and A. Scott, The discrete self-trapping equation, Physica D: Nonlinear Phenomena, 16 (1985), 318-338, URL http://www.sciencedirect.com/science/article/pii/0167278985900120.
doi: 10.1016/0167-2789(85)90012-0. |
[11] |
E. Forest, Canonical integrators as tracking codes, AIP Conference Proceedings, 184 (1989), 1106-1136. |
[12] |
I. L. Garanovich, A. A. Sukhorukov and Y. S. Kivshar, Surface multi-gap vector solitons, Optics Express, 14 (2006), 4780-4785.
doi: 10.1364/OE.14.004780. |
[13] |
O. Gonzales, Time integration and discrete Hamiltonian systems, Journal of Nonlinear Science, 6 (1996), 449-467.
doi: 10.1007/BF02440162. |
[14] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer, 2006. |
[15] |
T. Holstein, Studies of polaron motion: Part I. the molecular-crystal model, Ann. Phys., 8 (1959), 325-389. |
[16] |
B. LeMesurier, Studying Davydov's ODE model of wave motion in alpha-helix protein using exactly energy-momentum conserving discretizations for Hamiltonian systems, Mathematics and Computers in Simulation, 82 (2012), 1239-1248, Published online 30 December 2010.
doi: 10.1016/j.matcom.2010.11.017. |
[17] |
B. LeMesurier, Energetic pulses in exciton-phonon molecular chains, and conservative numerical methods for quasi-linear Hamiltonian systems, Physical Review E, 88 (2013), 032707, URL http://arxiv.org/abs/1301.2996. |
[18] |
R. I. McLachlin, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM Journal of Scientific Computation, 16 (1995), 151-168.
doi: 10.1137/0916010. |
[19] |
D. Pelinovsky and V. Rothos, Bifurcations of travelling wave solutions in the discrete NLS equation, Physica D, 202 (2005), 16-36.
doi: 10.1016/j.physd.2005.01.016. |
[20] |
A. C. Scott, The vibrational structure of Davydov solitons, Physica Scripta, 25 (1982), 651-658.
doi: 10.1088/0031-8949/25/5/015. |
[21] |
A. C. Scott, Davydov's soliton, Physics Reports, 217 (1992), 1-67. |
[22] |
A. A. Sukhorukov and Y. S. Kivshar, Discrete gap solitons in modulated waveguide arrays, Opt. Lett., 27 (2002), 2112-2114.
doi: 10.1364/NLGW.2002.NLTuA2. |
[23] |
M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations, Phys. Lett. A, 146 (1990), 319-323.
doi: 10.1016/0375-9601(90)90962-N. |
[24] |
H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268.
doi: 10.1016/0375-9601(90)90092-3. |
[1] |
Yavar Kian. Stability of the determination of a coefficient for wave equations in an infinite waveguide. Inverse Problems and Imaging, 2014, 8 (3) : 713-732. doi: 10.3934/ipi.2014.8.713 |
[2] |
Lianbing She, Mirelson M. Freitas, Mauricio S. Vinhote, Renhai Wang. Existence and approximation of attractors for nonlinear coupled lattice wave equations. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021272 |
[3] |
Alexandre N. Carvalho, Jan W. Cholewa. NLS-like equations in bounded domains: Parabolic approximation procedure. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 57-77. doi: 10.3934/dcdsb.2018005 |
[4] |
Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054 |
[5] |
Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136 |
[6] |
Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756 |
[7] |
Scipio Cuccagna. Orbitally but not asymptotically stable ground states for the discrete NLS. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 105-134. doi: 10.3934/dcds.2010.26.105 |
[8] |
Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227 |
[9] |
Panayotis Panayotaros, Felipe Rivero. Multistability and localized attractors in a dissipative discrete NLS equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1137-1154. doi: 10.3934/dcdsb.2014.19.1137 |
[10] |
Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055 |
[11] |
E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure and Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457 |
[12] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 |
[13] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[14] |
Anudeep Kumar Arora. Scattering of radial data in the focusing NLS and generalized Hartree equations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6643-6668. doi: 10.3934/dcds.2019289 |
[15] |
Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063 |
[16] |
Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053 |
[17] |
Shujuan Lü, Zeting Liu, Zhaosheng Feng. Hermite spectral method for Long-Short wave equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 941-964. doi: 10.3934/dcdsb.2018255 |
[18] |
H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119 |
[19] |
A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185 |
[20] |
H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]