September  2016, 21(7): 2129-2143. doi: 10.3934/dcdsb.2016040

Semi-Kolmogorov models for predation with indirect effects in random environments

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain

3. 

221 Parker Hall, Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849

Received  September 2015 Revised  February 2016 Published  August 2016

In this work we study semi-Kolmogorov models for predation with both the carrying capacities and the indirect effects varying with respect to randomly fluctuating environments. In particular, we consider one random semi-Kolmogorov system involving random and essentially bounded parameters, and one stochastic semi-Kolmogorov system involving white noise and stochastic parameters defined upon a continuous-time Markov chain. For both systems we investigate the existence and uniqueness of solutions, as well as positiveness and boundedness of solutions. For the random semi-Kolmogorov system we also obtain sufficient conditions for the existence of a global random attractor.
Citation: Tomás Caraballo, Renato Colucci, Xiaoying Han. Semi-Kolmogorov models for predation with indirect effects in random environments. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2129-2143. doi: 10.3934/dcdsb.2016040
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

Y. Asai and P. E. Kloeden, Numerical schemes for random ODEs via stochastic differential equations, Commun. Appl. Analysis, 17 (2013), 521-528.

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 6601-6616. doi: 10.1016/j.na.2011.06.043.

[4]

B. Bolker, M. Holyoak, V. Krivan, L. Rowe and O. Schmitz, Connecting theoretical and empirical studies of trait-mediated interactions, Ecology, 84 (2003), 1101-1114.

[5]

J. L. Brooks and I. D. Stanley, Predation, body size, and composition of plankton, Science, 150 (1965), 28-35. doi: 10.1126/science.150.3692.28.

[6]

D. Cariveau, R. E. Irwin, A. K. Brody, S. L. Garcia-Mayeya and A. Von der Ohe, Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits, OIKOS, 104 (2004), 15-26. doi: 10.1111/j.0030-1299.2004.12641.x.

[7]

T. Caraballo, R. Colucci and X. Han, Non-autonomous dynamics of a semi-kolmogorov population model with periodic forcing, Nonlinear Anal. Real World Appl., 31 (2016), 661-680. doi: 10.1016/j.nonrwa.2016.03.007.

[8]

T. Caraballo, R. Colucci and X. Han, Predation with indirect effects in Fluctuating Environments, Nonlinear Dynamics, 84 (2016), 115-126. doi: 10.1007/s11071-015-2238-3.

[9]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335. doi: 10.1007/s11464-008-0028-7.

[10]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Analysis TMA, 64 (2006), 484-498.

[11]

J. E. Cohen, T. Luczak, C. M. Newman and Z. M. Zhou, Stochastic structure and nonlinear dynamics of food webs: qualitative stability in a lotka-volterra cascade model, Proceedings of the Royal Society of London. Series B, Biological Sciences, 240 (1990), 607-627. doi: 10.1098/rspb.1990.0055.

[12]

R. Colucci, Coexistence in a one-predator, two-prey system with indirect effects, Journal of Applied Mathematics, (2013), Article ID 625391, 13 pages.

[13]

R. Colucci and D. Nunez, Periodic orbits for a three-dimensional biological differential systems, Abstract and Applied Analysis, (2013), Article ID 465183, 10 pages.

[14]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber Dtsch Math-Ver, 117 (2015), 173-206. doi: 10.1365/s13291-015-0115-0.

[15]

N. H. Dang, N. H. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competivey type under telegraph noise, J. Diff. Equ., 257 (2014), 2078-2101. doi: 10.1016/j.jde.2014.05.029.

[16]

N. H. Du, R. Kon, K. Sato and Y. Takeuchi, Dynamical behavior of Lotka-Volterra competition systems: Nonautonomous bistable case and the effect of telegraph noise, J. Comput. Appl. Math., 170 (2004), 399-422. doi: 10.1016/j.cam.2004.02.001.

[17]

, Indirect effects affect ecosystem dynamics., , (2011). 

[18]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stochastics Stochastics Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083.

[19]

J. Hulsman and F. J. Weissing, Biodiversity of Plankton by species oscillations and Chaos, Nature, 402 (1999).

[20]

C. Jeffries, Stability of predation ecosystem models, Ecology, 57 (1976), 1321-1325. doi: 10.2307/1935058.

[21]

D. Jiang, Ningzhong Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172. doi: 10.1016/j.jmaa.2004.08.027.

[22]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69-84. doi: 10.1016/j.jmaa.2006.12.032.

[23]

Q Luo and X. Mao, Stochastic population dynamics under regime switching II, J. Math. Anal. Appl., 355 (2009), 577-593. doi: 10.1016/j.jmaa.2009.02.010.

[24]

P. E. Kloeden and E. Platen, Numerical Solutions to Stochastic Differential Equations, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.

[25]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.

[26]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006. doi: 10.1142/p473.

[27]

B. A. Menge, Indirect effects in marine rocky intertidal interaction webs: Patterns and importance, Ecological Monographs, 65 (1995), 21-74. doi: 10.2307/2937158.

[28]

K. Rohde, Nonequilibrium Ecology, Cambridge University Press, 2005. doi: 10.1017/CBO9780511542152.

[29]

M. Slatkin, The dynamics of a population in a Markovian environment, Ecology, 59 (1978), 249-256. doi: 10.2307/1936370.

[30]

Y. Takeuchi, N. H. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957. doi: 10.1016/j.jmaa.2005.11.009.

[31]

M. R. Walsh and D. N. Reznick, Interactions between the direct and indirect effects of predators determine life history evolution in a killifish, Pnas, www.pnas.org/cgi/doi/10.1073/pnas.0710051105.

[32]

J. T. Wootton, Indirect effects, prey susceptibility, and habitat selection: Impacts of birds on limpets and algae, Ecology, 73 (1992), 981-991. doi: 10.2307/1940174.

[33]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system, J. Math. Anal. Appl., 364 (2010), 104-118. doi: 10.1016/j.jmaa.2009.10.072.

[34]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay, SIAM J. Appl. Math., 70 (2009), 641-657. doi: 10.1137/080719194.

[35]

C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), e1370-e1379. doi: 10.1016/j.na.2009.01.166.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

Y. Asai and P. E. Kloeden, Numerical schemes for random ODEs via stochastic differential equations, Commun. Appl. Analysis, 17 (2013), 521-528.

[3]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 6601-6616. doi: 10.1016/j.na.2011.06.043.

[4]

B. Bolker, M. Holyoak, V. Krivan, L. Rowe and O. Schmitz, Connecting theoretical and empirical studies of trait-mediated interactions, Ecology, 84 (2003), 1101-1114.

[5]

J. L. Brooks and I. D. Stanley, Predation, body size, and composition of plankton, Science, 150 (1965), 28-35. doi: 10.1126/science.150.3692.28.

[6]

D. Cariveau, R. E. Irwin, A. K. Brody, S. L. Garcia-Mayeya and A. Von der Ohe, Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits, OIKOS, 104 (2004), 15-26. doi: 10.1111/j.0030-1299.2004.12641.x.

[7]

T. Caraballo, R. Colucci and X. Han, Non-autonomous dynamics of a semi-kolmogorov population model with periodic forcing, Nonlinear Anal. Real World Appl., 31 (2016), 661-680. doi: 10.1016/j.nonrwa.2016.03.007.

[8]

T. Caraballo, R. Colucci and X. Han, Predation with indirect effects in Fluctuating Environments, Nonlinear Dynamics, 84 (2016), 115-126. doi: 10.1007/s11071-015-2238-3.

[9]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335. doi: 10.1007/s11464-008-0028-7.

[10]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Analysis TMA, 64 (2006), 484-498.

[11]

J. E. Cohen, T. Luczak, C. M. Newman and Z. M. Zhou, Stochastic structure and nonlinear dynamics of food webs: qualitative stability in a lotka-volterra cascade model, Proceedings of the Royal Society of London. Series B, Biological Sciences, 240 (1990), 607-627. doi: 10.1098/rspb.1990.0055.

[12]

R. Colucci, Coexistence in a one-predator, two-prey system with indirect effects, Journal of Applied Mathematics, (2013), Article ID 625391, 13 pages.

[13]

R. Colucci and D. Nunez, Periodic orbits for a three-dimensional biological differential systems, Abstract and Applied Analysis, (2013), Article ID 465183, 10 pages.

[14]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber Dtsch Math-Ver, 117 (2015), 173-206. doi: 10.1365/s13291-015-0115-0.

[15]

N. H. Dang, N. H. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competivey type under telegraph noise, J. Diff. Equ., 257 (2014), 2078-2101. doi: 10.1016/j.jde.2014.05.029.

[16]

N. H. Du, R. Kon, K. Sato and Y. Takeuchi, Dynamical behavior of Lotka-Volterra competition systems: Nonautonomous bistable case and the effect of telegraph noise, J. Comput. Appl. Math., 170 (2004), 399-422. doi: 10.1016/j.cam.2004.02.001.

[17]

, Indirect effects affect ecosystem dynamics., , (2011). 

[18]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stochastics Stochastics Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083.

[19]

J. Hulsman and F. J. Weissing, Biodiversity of Plankton by species oscillations and Chaos, Nature, 402 (1999).

[20]

C. Jeffries, Stability of predation ecosystem models, Ecology, 57 (1976), 1321-1325. doi: 10.2307/1935058.

[21]

D. Jiang, Ningzhong Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005), 164-172. doi: 10.1016/j.jmaa.2004.08.027.

[22]

Q. Luo and X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69-84. doi: 10.1016/j.jmaa.2006.12.032.

[23]

Q Luo and X. Mao, Stochastic population dynamics under regime switching II, J. Math. Anal. Appl., 355 (2009), 577-593. doi: 10.1016/j.jmaa.2009.02.010.

[24]

P. E. Kloeden and E. Platen, Numerical Solutions to Stochastic Differential Equations, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.

[25]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.

[26]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006. doi: 10.1142/p473.

[27]

B. A. Menge, Indirect effects in marine rocky intertidal interaction webs: Patterns and importance, Ecological Monographs, 65 (1995), 21-74. doi: 10.2307/2937158.

[28]

K. Rohde, Nonequilibrium Ecology, Cambridge University Press, 2005. doi: 10.1017/CBO9780511542152.

[29]

M. Slatkin, The dynamics of a population in a Markovian environment, Ecology, 59 (1978), 249-256. doi: 10.2307/1936370.

[30]

Y. Takeuchi, N. H. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957. doi: 10.1016/j.jmaa.2005.11.009.

[31]

M. R. Walsh and D. N. Reznick, Interactions between the direct and indirect effects of predators determine life history evolution in a killifish, Pnas, www.pnas.org/cgi/doi/10.1073/pnas.0710051105.

[32]

J. T. Wootton, Indirect effects, prey susceptibility, and habitat selection: Impacts of birds on limpets and algae, Ecology, 73 (1992), 981-991. doi: 10.2307/1940174.

[33]

F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system, J. Math. Anal. Appl., 364 (2010), 104-118. doi: 10.1016/j.jmaa.2009.10.072.

[34]

F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay, SIAM J. Appl. Math., 70 (2009), 641-657. doi: 10.1137/080719194.

[35]

C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), e1370-e1379. doi: 10.1016/j.na.2009.01.166.

[1]

Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693

[2]

Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176

[3]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[4]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[5]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[6]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[7]

Yuying Liu, Yuxiao Guo, Junjie Wei. Dynamics in a diffusive predator-prey system with stage structure and strong allee effect. Communications on Pure and Applied Analysis, 2020, 19 (2) : 883-910. doi: 10.3934/cpaa.2020040

[8]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[9]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[10]

Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177

[11]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[12]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

[13]

Baifeng Zhang, Guohong Zhang, Xiaoli Wang. Threshold dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021260

[14]

Dingyong Bai, Jianshe Yu, Yun Kang. Spatiotemporal dynamics of a diffusive predator-prey model with generalist predator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 2949-2973. doi: 10.3934/dcdss.2020132

[15]

Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102

[16]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[17]

Chao Liu, Bin Liu. Boundedness and asymptotic behavior in a predator-prey model with indirect pursuit-evasion interaction. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021255

[18]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[19]

Jun Li, Fubao Xi. Exponential ergodicity for regime-switching diffusion processes in total variation norm. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021309

[20]

Simone Fagioli, Yahya Jaafra. Multiple patterns formation for an aggregation/diffusion predator-prey system. Networks and Heterogeneous Media, 2021, 16 (3) : 377-411. doi: 10.3934/nhm.2021010

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (134)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]