-
Previous Article
A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor
- DCDS-B Home
- This Issue
-
Next Article
Ergodicity and loss of capacity for a random family of concave maps
Ghosts of bump attractors in stochastic neural fields: Bottlenecks and extinction
1. | Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, United States |
References:
[1] |
S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybern., 27 (1977), 77-87.
doi: 10.1007/BF00337259. |
[2] |
D. Blömker, M. Hairer and G. Pavliotis, Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities, Nonlinearity, 20 (2007), 1721-1744.
doi: 10.1088/0951-7715/20/7/009. |
[3] |
M. Bode, Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter distributions, Physica D, 106 (1997), 270-286.
doi: 10.1016/S0167-2789(97)00050-X. |
[4] |
C. A. Brackley and M. S. Turner, Random fluctuations of the firing rate function in a continuum neural field model, Phys. Rev. E, 75 (2007), 041913.
doi: 10.1103/PhysRevE.75.041913. |
[5] |
P. C. Bressloff and S. E. Folias, Front bifurcations in an excitatory neural network, SIAM J Appl. Math., 65 (2004), 131-151.
doi: 10.1137/S0036139903434481. |
[6] |
P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields, J Phys. A: Math. Theor., 45 (2012), 033001, 109pp.
doi: 10.1088/1751-8113/45/3/033001. |
[7] |
P. C. Bressloff and Z. P. Kilpatrick, Nonlinear Langevin equations for wandering patterns in stochastic neural fields, SIAM J. Appl. Dyn. Syst., 14 (2015), 305-334.
doi: 10.1137/140990371. |
[8] |
P. C. Bressloff and M. A. Webber, Front propagation in stochastic neural fields, SIAM J. Appl. Dyn. Syst., 11 (2012), 708-740.
doi: 10.1137/110851031. |
[9] |
M. A. Buice and C. C. Chow, Dynamic finite size effects in spiking neural networks, PLoS Comput. Biol, 9 (2013), e1002872, 21pp.
doi: 10.1371/journal.pcbi.1002872. |
[10] |
A. Compte, N. Brunel, P. S. Goldman-Rakic and X. J. Wang, Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model, Cereb. Cortex, 10 (2000), 910-923.
doi: 10.1093/cercor/10.9.910. |
[11] |
S. Coombes, Waves, bumps, and patterns in neural field theories, Biol. Cybern., 93 (2005), 91-108.
doi: 10.1007/s00422-005-0574-y. |
[12] |
S. Coombes and M. R. Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Phys. Rev. Lett., 94 (2005), 148102.
doi: 10.1103/PhysRevLett.94.148102. |
[13] |
S. Coombes, H. Schmidt and I. Bojak, Interface dynamics in planar neural field models, J Math. Neurosci, 2 (2012), Art. 9, 27 pp.
doi: 10.1186/2190-8567-2-9. |
[14] |
S. Coombes and H. Schmidt, Neural fields with sigmoidal firing rates: Approximate solutions, Discrete Contin. Dyn. Syst., 28 (2010), 1369-1379.
doi: 10.3934/dcds.2010.28.1369. |
[15] |
S. Coombes, H. Schmidt, C. R. Laing, N. Svanstedt and J. A. Wyller, Waves in random neural media, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 2951-2970.
doi: 10.3934/dcds.2012.32.2951. |
[16] |
R. Curtu and B. Ermentrout, Oscillations in a refractory neural net, J Math. Biol., 43 (2001), 81-100.
doi: 10.1007/s002850100089. |
[17] |
B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems, Rep. Prog. Phys., 61 (1998), 353-430.
doi: 10.1088/0034-4885/61/4/002. |
[18] |
O. Faugeras, R. Veltz and F. Grimbert, Persistent neural states: Stationary localized activity patterns in the nonlinear continuous n-population, q-dimensional neural networks, Neural Comput., 21 (2009), 147-187.
doi: 10.1162/neco.2009.12-07-660. |
[19] |
S. E. Folias and P. C. Bressloff, Breathing pulses in an excitatory neural network, SIAM J Appl. Dyn. Syst., 3 (2004), 378-407.
doi: 10.1137/030602629. |
[20] |
S. E. Folias, Nonlinear analysis of breathing pulses in a synaptically coupled neural network, SIAM J Appl. Dyn. Syst., 10 (2011), 744-787.
doi: 10.1137/100815852. |
[21] |
S. Funahashi, C. J. Bruce and P. S. Goldman-Rakic, Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex, J Neurophysiol., 61 (1989), 331-349. |
[22] |
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, 3rd edition, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-05389-8. |
[23] |
P. S. Goldman-Rakic, Cellular basis of working memory, Neuron, 14 (1995), 477-485.
doi: 10.1016/0896-6273(95)90304-6. |
[24] |
Y. Guo and C. Chow, Existence and stability of standing pulses in neural networks: I. Existence, SIAM J Appl. Dyn. Syst., 4 (2005), 217-248.
doi: 10.1137/040609471. |
[25] |
B. S. Gutkin, C. R. Laing, C. L. Colby, C. C. Chow and G. B. Ermentrout, Turning on and off with excitation: The role of spike-timing asynchrony and synchrony in sustained neural activity, J Comput. Neurosci., 11 (2001), 121-134. |
[26] |
D. Hansel and H. Sompolinsky, Modeling feature selectivity in local cortical circuits, in Methods in neuronal modeling: From ions to networks (eds. C. Koch and I. Segev), Cambridge: MIT, 1998, Chapter 13, 499-567. |
[27] |
X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff and J.-Y. Wu, Spiral waves in disinhibited mammalian neocortex, J Neurosci., 24 (2004), 9897-9902.
doi: 10.1523/JNEUROSCI.2705-04.2004. |
[28] |
A. Hutt and F. M. Atay, Analysis of nonlocal neural fields for both general and gamma-distributed connectivities, Physica D, 203 (2005), 30-54.
doi: 10.1016/j.physd.2005.03.002. |
[29] |
A. Hutt, M. Bestehorn and T. Wennekers, Pattern formation in intracortical neuronal fields, Network, 14 (2003), 351-368.
doi: 10.1088/0954-898X_14_2_310. |
[30] |
A. Hutt, A. Longtin and L. Schimansky-Geier, Additive noise-induced turing transitions in spatial systems with application to neural fields and the Swift-Hohenberg equation, Physica D, 237 (2008), 755-773.
doi: 10.1016/j.physd.2007.10.013. |
[31] |
A. Hutt and N. P. Rougier, Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields, Phys. Rev. E, 82 (2010), R055701.
doi: 10.1103/PhysRevE.82.055701. |
[32] |
J. P. Keener, Principles of Applied Mathematics, Perseus Books, Advanced Book Program, Cambridge, MA, 2000. |
[33] |
Z. P. Kilpatrick and P. C. Bressloff, Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network, Physica D, 239 (2010), 547-560.
doi: 10.1016/j.physd.2009.06.003. |
[34] |
Z. P. Kilpatrick and P. C. Bressloff, Stability of bumps in piecewise smooth neural fields with nonlinear adaptation, Physica D, 239 (2010), 1048-1060.
doi: 10.1016/j.physd.2010.02.016. |
[35] |
Z. P. Kilpatrick and B. Ermentrout, Wandering bumps in stochastic neural fields, SIAM J. Appl. Dyn. Syst., 12 (2013), 61-94.
doi: 10.1137/120877106. |
[36] |
Z. P. Kilpatrick and G. Faye, Pulse bifurcations in stochastic neural fields, SIAM J Appl. Dyn. Syst., 13 (2014), 830-860.
doi: 10.1137/140951369. |
[37] |
K. Kishimoto and S. Amari, Existence and stability of local excitations in homogeneous neural fields, J Math. Biol., 7 (1979), 303-318.
doi: 10.1007/BF00275151. |
[38] |
C. R. Laing, Spiral waves in nonlocal equations, SIAM J Appl. Dyn. Syst., 4 (2005), 588-606.
doi: 10.1137/040612890. |
[39] |
C. R. Laing, Derivation of a neural field model from a network of theta neurons, Phys. Rev. E, 90 (2014), 010901.
doi: 10.1103/PhysRevE.90.010901. |
[40] |
C. R. Laing and A. Longtin, Noise-induced stabilization of bumps in systems with long-range spatial coupling, Physica D, 160 (2001), 149-172.
doi: 10.1016/S0167-2789(01)00351-7. |
[41] |
C. R. Laing, W. C. Troy, B. Gutkin and G. B. Ermentrout, Multiple bumps in a neuronal model of working memory, SIAM J Appl. Math., 63 (2002), 62-97.
doi: 10.1137/S0036139901389495. |
[42] |
B. Lindner, A. Longtin and A. Bulsara, Analytic expressions for rate and cv of a type i neuron driven by white gaussian noise, Neural Comput., 15 (2003), 1761-1788.
doi: 10.1162/08997660360675035. |
[43] |
E. Montbrió, D. Pazó and A. Roxin, Macroscopic description for networks of spiking neurons, Phys. Rev. X, 5 (2015), 021028. |
[44] |
D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses, SIAM J Appl. Math., 62 (2001), 206-225.
doi: 10.1137/S0036139900346453. |
[45] |
D. J. Pinto, S. L. Patrick, W. C. Huang and B. W. Connors, Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms, J Neurosci., 25 (2005), 8131-8140.
doi: 10.1523/JNEUROSCI.2278-05.2005. |
[46] |
S. Qiu and C. Chow, Field theory for biophysical neural networks,, arXiv preprint, ().
|
[47] |
K. A. Richardson, S. J. Schiff and B. J. Gluckman, Control of traveling waves in the mammalian cortex, Phys. Rev. Lett., 94 (2005), 028103.
doi: 10.1103/PhysRevLett.94.028103. |
[48] |
F. Sagues, J. M. Sancho and J. Garcia-Ojalvo, Spatiotemporal order out of noise, Rev. Mod. Phys., 79 (2007), 829-882.
doi: 10.1103/RevModPhys.79.829. |
[49] |
P. Schütz, M. Bode and H.-G. Purwins, Bifurcations of front dynamics in a reaction-diffusion system with spatial inhomogeneities, Physica D, 82 (1995), 382-397.
doi: 10.1016/0167-2789(95)00048-9. |
[50] |
D. Sigeti and W. Horsthemke, Pseudo-regular oscillations induced by external noise, J Stat. Phys., 54 (1989), 1217-1222.
doi: 10.1007/BF01044713. |
[51] |
S. H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, Westview press, 2014. |
[52] |
R. Veltz and O. Faugeras, Local/global analysis of the stationary solutions of some neural field equations, SIAM J Appl. Dyn. Syst., 9 (2010), 954-998.
doi: 10.1137/090773611. |
[53] |
N. A. Venkov, S. Coombes and P. C. Matthews, Dynamic instabilities in scalar neural field equations with space-dependent delays, Physica D, 232 (2007), 1-15.
doi: 10.1016/j.physd.2007.04.011. |
[54] |
H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J, 12 (1972), 1-24.
doi: 10.1016/S0006-3495(72)86068-5. |
[55] |
K. Wimmer, D. Q. Nykamp, C. Constantinidis and A. Compte, Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory, Nat. Neurosci., 17 (2014), 431-439.
doi: 10.1038/nn.3645. |
show all references
References:
[1] |
S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybern., 27 (1977), 77-87.
doi: 10.1007/BF00337259. |
[2] |
D. Blömker, M. Hairer and G. Pavliotis, Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities, Nonlinearity, 20 (2007), 1721-1744.
doi: 10.1088/0951-7715/20/7/009. |
[3] |
M. Bode, Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter distributions, Physica D, 106 (1997), 270-286.
doi: 10.1016/S0167-2789(97)00050-X. |
[4] |
C. A. Brackley and M. S. Turner, Random fluctuations of the firing rate function in a continuum neural field model, Phys. Rev. E, 75 (2007), 041913.
doi: 10.1103/PhysRevE.75.041913. |
[5] |
P. C. Bressloff and S. E. Folias, Front bifurcations in an excitatory neural network, SIAM J Appl. Math., 65 (2004), 131-151.
doi: 10.1137/S0036139903434481. |
[6] |
P. C. Bressloff, Spatiotemporal dynamics of continuum neural fields, J Phys. A: Math. Theor., 45 (2012), 033001, 109pp.
doi: 10.1088/1751-8113/45/3/033001. |
[7] |
P. C. Bressloff and Z. P. Kilpatrick, Nonlinear Langevin equations for wandering patterns in stochastic neural fields, SIAM J. Appl. Dyn. Syst., 14 (2015), 305-334.
doi: 10.1137/140990371. |
[8] |
P. C. Bressloff and M. A. Webber, Front propagation in stochastic neural fields, SIAM J. Appl. Dyn. Syst., 11 (2012), 708-740.
doi: 10.1137/110851031. |
[9] |
M. A. Buice and C. C. Chow, Dynamic finite size effects in spiking neural networks, PLoS Comput. Biol, 9 (2013), e1002872, 21pp.
doi: 10.1371/journal.pcbi.1002872. |
[10] |
A. Compte, N. Brunel, P. S. Goldman-Rakic and X. J. Wang, Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model, Cereb. Cortex, 10 (2000), 910-923.
doi: 10.1093/cercor/10.9.910. |
[11] |
S. Coombes, Waves, bumps, and patterns in neural field theories, Biol. Cybern., 93 (2005), 91-108.
doi: 10.1007/s00422-005-0574-y. |
[12] |
S. Coombes and M. R. Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Phys. Rev. Lett., 94 (2005), 148102.
doi: 10.1103/PhysRevLett.94.148102. |
[13] |
S. Coombes, H. Schmidt and I. Bojak, Interface dynamics in planar neural field models, J Math. Neurosci, 2 (2012), Art. 9, 27 pp.
doi: 10.1186/2190-8567-2-9. |
[14] |
S. Coombes and H. Schmidt, Neural fields with sigmoidal firing rates: Approximate solutions, Discrete Contin. Dyn. Syst., 28 (2010), 1369-1379.
doi: 10.3934/dcds.2010.28.1369. |
[15] |
S. Coombes, H. Schmidt, C. R. Laing, N. Svanstedt and J. A. Wyller, Waves in random neural media, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 2951-2970.
doi: 10.3934/dcds.2012.32.2951. |
[16] |
R. Curtu and B. Ermentrout, Oscillations in a refractory neural net, J Math. Biol., 43 (2001), 81-100.
doi: 10.1007/s002850100089. |
[17] |
B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems, Rep. Prog. Phys., 61 (1998), 353-430.
doi: 10.1088/0034-4885/61/4/002. |
[18] |
O. Faugeras, R. Veltz and F. Grimbert, Persistent neural states: Stationary localized activity patterns in the nonlinear continuous n-population, q-dimensional neural networks, Neural Comput., 21 (2009), 147-187.
doi: 10.1162/neco.2009.12-07-660. |
[19] |
S. E. Folias and P. C. Bressloff, Breathing pulses in an excitatory neural network, SIAM J Appl. Dyn. Syst., 3 (2004), 378-407.
doi: 10.1137/030602629. |
[20] |
S. E. Folias, Nonlinear analysis of breathing pulses in a synaptically coupled neural network, SIAM J Appl. Dyn. Syst., 10 (2011), 744-787.
doi: 10.1137/100815852. |
[21] |
S. Funahashi, C. J. Bruce and P. S. Goldman-Rakic, Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex, J Neurophysiol., 61 (1989), 331-349. |
[22] |
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, 3rd edition, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-05389-8. |
[23] |
P. S. Goldman-Rakic, Cellular basis of working memory, Neuron, 14 (1995), 477-485.
doi: 10.1016/0896-6273(95)90304-6. |
[24] |
Y. Guo and C. Chow, Existence and stability of standing pulses in neural networks: I. Existence, SIAM J Appl. Dyn. Syst., 4 (2005), 217-248.
doi: 10.1137/040609471. |
[25] |
B. S. Gutkin, C. R. Laing, C. L. Colby, C. C. Chow and G. B. Ermentrout, Turning on and off with excitation: The role of spike-timing asynchrony and synchrony in sustained neural activity, J Comput. Neurosci., 11 (2001), 121-134. |
[26] |
D. Hansel and H. Sompolinsky, Modeling feature selectivity in local cortical circuits, in Methods in neuronal modeling: From ions to networks (eds. C. Koch and I. Segev), Cambridge: MIT, 1998, Chapter 13, 499-567. |
[27] |
X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff and J.-Y. Wu, Spiral waves in disinhibited mammalian neocortex, J Neurosci., 24 (2004), 9897-9902.
doi: 10.1523/JNEUROSCI.2705-04.2004. |
[28] |
A. Hutt and F. M. Atay, Analysis of nonlocal neural fields for both general and gamma-distributed connectivities, Physica D, 203 (2005), 30-54.
doi: 10.1016/j.physd.2005.03.002. |
[29] |
A. Hutt, M. Bestehorn and T. Wennekers, Pattern formation in intracortical neuronal fields, Network, 14 (2003), 351-368.
doi: 10.1088/0954-898X_14_2_310. |
[30] |
A. Hutt, A. Longtin and L. Schimansky-Geier, Additive noise-induced turing transitions in spatial systems with application to neural fields and the Swift-Hohenberg equation, Physica D, 237 (2008), 755-773.
doi: 10.1016/j.physd.2007.10.013. |
[31] |
A. Hutt and N. P. Rougier, Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields, Phys. Rev. E, 82 (2010), R055701.
doi: 10.1103/PhysRevE.82.055701. |
[32] |
J. P. Keener, Principles of Applied Mathematics, Perseus Books, Advanced Book Program, Cambridge, MA, 2000. |
[33] |
Z. P. Kilpatrick and P. C. Bressloff, Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network, Physica D, 239 (2010), 547-560.
doi: 10.1016/j.physd.2009.06.003. |
[34] |
Z. P. Kilpatrick and P. C. Bressloff, Stability of bumps in piecewise smooth neural fields with nonlinear adaptation, Physica D, 239 (2010), 1048-1060.
doi: 10.1016/j.physd.2010.02.016. |
[35] |
Z. P. Kilpatrick and B. Ermentrout, Wandering bumps in stochastic neural fields, SIAM J. Appl. Dyn. Syst., 12 (2013), 61-94.
doi: 10.1137/120877106. |
[36] |
Z. P. Kilpatrick and G. Faye, Pulse bifurcations in stochastic neural fields, SIAM J Appl. Dyn. Syst., 13 (2014), 830-860.
doi: 10.1137/140951369. |
[37] |
K. Kishimoto and S. Amari, Existence and stability of local excitations in homogeneous neural fields, J Math. Biol., 7 (1979), 303-318.
doi: 10.1007/BF00275151. |
[38] |
C. R. Laing, Spiral waves in nonlocal equations, SIAM J Appl. Dyn. Syst., 4 (2005), 588-606.
doi: 10.1137/040612890. |
[39] |
C. R. Laing, Derivation of a neural field model from a network of theta neurons, Phys. Rev. E, 90 (2014), 010901.
doi: 10.1103/PhysRevE.90.010901. |
[40] |
C. R. Laing and A. Longtin, Noise-induced stabilization of bumps in systems with long-range spatial coupling, Physica D, 160 (2001), 149-172.
doi: 10.1016/S0167-2789(01)00351-7. |
[41] |
C. R. Laing, W. C. Troy, B. Gutkin and G. B. Ermentrout, Multiple bumps in a neuronal model of working memory, SIAM J Appl. Math., 63 (2002), 62-97.
doi: 10.1137/S0036139901389495. |
[42] |
B. Lindner, A. Longtin and A. Bulsara, Analytic expressions for rate and cv of a type i neuron driven by white gaussian noise, Neural Comput., 15 (2003), 1761-1788.
doi: 10.1162/08997660360675035. |
[43] |
E. Montbrió, D. Pazó and A. Roxin, Macroscopic description for networks of spiking neurons, Phys. Rev. X, 5 (2015), 021028. |
[44] |
D. J. Pinto and G. B. Ermentrout, Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses, SIAM J Appl. Math., 62 (2001), 206-225.
doi: 10.1137/S0036139900346453. |
[45] |
D. J. Pinto, S. L. Patrick, W. C. Huang and B. W. Connors, Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms, J Neurosci., 25 (2005), 8131-8140.
doi: 10.1523/JNEUROSCI.2278-05.2005. |
[46] |
S. Qiu and C. Chow, Field theory for biophysical neural networks,, arXiv preprint, ().
|
[47] |
K. A. Richardson, S. J. Schiff and B. J. Gluckman, Control of traveling waves in the mammalian cortex, Phys. Rev. Lett., 94 (2005), 028103.
doi: 10.1103/PhysRevLett.94.028103. |
[48] |
F. Sagues, J. M. Sancho and J. Garcia-Ojalvo, Spatiotemporal order out of noise, Rev. Mod. Phys., 79 (2007), 829-882.
doi: 10.1103/RevModPhys.79.829. |
[49] |
P. Schütz, M. Bode and H.-G. Purwins, Bifurcations of front dynamics in a reaction-diffusion system with spatial inhomogeneities, Physica D, 82 (1995), 382-397.
doi: 10.1016/0167-2789(95)00048-9. |
[50] |
D. Sigeti and W. Horsthemke, Pseudo-regular oscillations induced by external noise, J Stat. Phys., 54 (1989), 1217-1222.
doi: 10.1007/BF01044713. |
[51] |
S. H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, Westview press, 2014. |
[52] |
R. Veltz and O. Faugeras, Local/global analysis of the stationary solutions of some neural field equations, SIAM J Appl. Dyn. Syst., 9 (2010), 954-998.
doi: 10.1137/090773611. |
[53] |
N. A. Venkov, S. Coombes and P. C. Matthews, Dynamic instabilities in scalar neural field equations with space-dependent delays, Physica D, 232 (2007), 1-15.
doi: 10.1016/j.physd.2007.04.011. |
[54] |
H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J, 12 (1972), 1-24.
doi: 10.1016/S0006-3495(72)86068-5. |
[55] |
K. Wimmer, D. Q. Nykamp, C. Constantinidis and A. Compte, Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory, Nat. Neurosci., 17 (2014), 431-439.
doi: 10.1038/nn.3645. |
[1] |
Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419 |
[2] |
Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923 |
[3] |
Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203 |
[4] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[5] |
Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215 |
[6] |
Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21 |
[7] |
W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351 |
[8] |
Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069 |
[9] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[10] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[11] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[12] |
Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293 |
[13] |
Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065 |
[14] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[15] |
Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701 |
[16] |
Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205 |
[17] |
Min Yang, Guanggan Chen. Finite dimensional reducing and smooth approximating for a class of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1565-1581. doi: 10.3934/dcdsb.2019240 |
[18] |
Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295 |
[19] |
Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006 |
[20] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]