-
Previous Article
Kolmogorov-type systems with regime-switching jump diffusion perturbations
- DCDS-B Home
- This Issue
-
Next Article
Neurotransmitter concentrations in the presence of neural switching in one dimension
Controlling stochasticity in epithelial-mesenchymal transition through multiple intermediate cellular states
1. | Department of Mathematics, Univ. of California Irvine, Irvine, CA 92697-3875, United States, United States |
2. | Department of mathematics, University of California, CA, 92697-3875 |
References:
[1] |
J. Baulida and A. Garcia de Herreros, Snail1-driven plasticity of epithelial and mesenchymal cells sustains cancer malignancy, Biochim Biophys Acta, 1856 (2015), 55-61.
doi: 10.1016/j.bbcan.2015.05.005. |
[2] |
T. Brabletz, A. Jung and S. Reu, et al., Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment, Proc Natl Acad Sci U S A, 98 (2001), 10356-10361. |
[3] |
A. Q. Cai, K. Radtke and A. Linville, et al., Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish, Development, 139 (2012), 2150-2155.
doi: 10.1242/dev.077065. |
[4] |
H. H. Chang, M. Hemberg and M. Barahona, et al., Transcriptome-wide noise controls lineage choice in mammalian progenitor cells, Nature, 453 (2008), 544-547.
doi: 10.1038/nature06965. |
[5] |
J. Chen, Q. Han and D. Pei, EMT and MET as paradigms for cell fate switching, J Mol Cell Biol, 4 (2012), 66-69.
doi: 10.1093/jmcb/mjr045. |
[6] |
M. Chen, L. Wang and C. C. Liu, et al., Noise attenuation in the ON and OFF states of biological switches, ACS Synth Biol, 2 (2013), 587-593.
doi: 10.1021/sb400044g. |
[7] |
S. Di Talia, J. M. Skotheim and J. M. Bean, et al., The effects of molecular noise and size control on variability in the budding yeast cell cycle, Nature, 448 (2007), 947-951.
doi: 10.1038/nature06072. |
[8] |
S. Gaudet, S. L. Spencer and W. W. Chen, et al., Exploring the contextual sensitivity of factors that determine cell-to-cell variability in receptor-mediated apoptosis, PLoS Comput Biol, 8 (2012), e1002482.
doi: 10.1371/journal.pcbi.1002482. |
[9] |
A. Grosse-Wilde, A. Fouquier d'Herouel and E. McIntosh, et al., Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival, PLoS One, 10 (2015), e0126522.
doi: 10.1371/journal.pone.0126522. |
[10] |
Y. Hart, Y. E. Antebi and A. E. Mayo, et al., Design principles of cell circuits with paradoxical components, Proc Natl Acad Sci U S A, 109 (2012), 8346-8351.
doi: 10.1073/pnas.1117475109. |
[11] |
K. Hayashi, S. de Sousa Lopes and F. Tang, et al., Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states, Cell Stem Cell, 3 (2008), 391-401.
doi: 10.1016/j.stem.2008.07.027. |
[12] |
T. Hong, K. Watanabe and C. Ta, et al., An ovol2-zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states, PLoS Comput Biol, 11 (2015), e1004569.
doi: 10.1371/journal.pcbi.1004569. |
[13] |
T. Hong, C. Oguz and J. J. Tyson, A mathematical framework for understanding four-dimensional heterogeneous differentiation of CD4+ T cells, Bulletin of Mathematical Biology, 77 (2015), 1046-1064.
doi: 10.1007/s11538-015-0076-6. |
[14] |
R. Y. Huang, M. K. Wong and T. Z. Tan, et al., An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530), Cell Death Dis, 4 (2013), e915.
doi: 10.1038/cddis.2013.442. |
[15] |
M. K. Jolly, D. Jia and M. Boareto, et al., Coupling the modules of EMT and stemness: A tunable 'stemness window' model, Oncotarget, 6 (2015), 25161-25174.
doi: 10.18632/oncotarget.4629. |
[16] |
R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition, The Journal of Clinical Investigation, 119 (2009), 1420-1428. |
[17] |
J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes, Springer-Verlag, 1987.
doi: 10.1007/978-1-4612-1054-2. |
[18] |
R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics, 29 (1966), 255-284.
doi: 10.1088/0034-4885/29/1/306. |
[19] |
D. A. Lawson, N. R. Bhakta and K. Kessenbrock, et al., Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells, Nature, 526 (2015), 131-135.
doi: 10.1038/nature15260. |
[20] |
J. Lei, S. A. Levin and Q. Nie, Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation, Proc Natl Acad Sci U S A, 111 (2014), E880-E887.
doi: 10.1073/pnas.1324267111. |
[21] |
W. A. Lim, C. M. Lee and C. Tang, Design principles of regulatory networks: Searching for the molecular algorithms of the cell, Mol Cell, 49 (2013), 202-212.
doi: 10.1016/j.molcel.2012.12.020. |
[22] |
X. Liu, S. Johnson and S. Liu, et al., Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy, Sci Rep, 2013. |
[23] |
W. C. Lo, C. S. Chou and K. K. Gokoffski, et al., Feedback regulation in multistage cell lineages, Math Biosci Eng, 6 (2009), 59-82.
doi: 10.3934/mbe.2009.6.59. |
[24] |
M. Lu, M. K. Jolly and H. Levine, et al., MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination, Proc Natl Acad Sci U S A, 110 (2013), 18144-18149.
doi: 10.1073/pnas.1318192110. |
[25] |
S. A. Mani, W. Guo and M. J. Liao, et al., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 133 (2008), 704-715.
doi: 10.1016/j.cell.2008.03.027. |
[26] |
K. V. Price, R. M. Storn and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer, Berlin, 2005. |
[27] |
Y. Shen, C. Shi and W. Wei, et al., The heterogeneity and dynamic equilibrium of rat embryonic stem cells, Cell Res, 21 (2011), 1143-1147.
doi: 10.1038/cr.2011.98. |
[28] |
M. S. Sosa, P. Bragado and J. A. Aguirre-Ghiso, Mechanisms of disseminated cancer cell dormancy: An awakening field, Nat Rev Cancer, 14 (2014), 611-622.
doi: 10.1038/nrc3793. |
[29] |
W. L. Tam and R. A. Weinberg, The epigenetics of epithelial-mesenchymal plasticity in cancer, Nature Medicine, 19 (2013), 1438-1449.
doi: 10.1038/nm.3336. |
[30] |
X. J. Tian, H. Zhang and J. Xing, Coupled reversible and irreversible bistable switches underlying TGF-$\beta$-induced epithelial to mesenchymal transition, Biophysical journal, 105 (2013), 1079-1089. |
[31] |
J. J. Tyson and B. Novak, Functional motifs in biochemical reaction networks, Annu Rev Phys Chem, 61 (2010), 219-240.
doi: 10.1146/annurev.physchem.012809.103457. |
[32] |
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, $3^{rd}$ edition, Elsevier, Amsterdam, 2007. |
[33] |
L. Wang, J. Xin and Q. Nie, A critical quantity for noise attenuation in feedback systems, PLoS Comput Biol, 6 (2010), e1000764, 17 pp.
doi: 10.1371/journal.pcbi.1000764. |
[34] |
W. Weston, J. Zayas and R. Perez, et al., Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets, Sci Rep, 4 (2014), 5199.
doi: 10.1038/srep05199. |
[35] |
X. Ye, W. L. Tam and T. Shibue, et al., Distinct EMT programs control normal mammary stem cells and tumour-initiating cells, Nature, 525 (2015), 256-260.
doi: 10.1038/nature14897. |
[36] |
J. Zhang, X. J. Tian and H. Zhang, et al., TGF-$\beta$-induced Epithelial-To-Mesenchymal Transition Proceeds Through Stepwise Activation of Multiple Feedback Loops, Science Signaling, 2014. |
[37] |
L. Zheng, M. Chen and Q. Nie, External noise control in inherently stochastic biological systems, J Math Phys, 53 (2012), 115616, 13 pp.
doi: 10.1063/1.4762825. |
[38] |
, Differential Evolution (DE) for Continuous Function Optimization (an algorithm by Kenneth Price and Rainer Storn),, Accessed in May 2016. Available from: , (2016).
|
show all references
References:
[1] |
J. Baulida and A. Garcia de Herreros, Snail1-driven plasticity of epithelial and mesenchymal cells sustains cancer malignancy, Biochim Biophys Acta, 1856 (2015), 55-61.
doi: 10.1016/j.bbcan.2015.05.005. |
[2] |
T. Brabletz, A. Jung and S. Reu, et al., Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment, Proc Natl Acad Sci U S A, 98 (2001), 10356-10361. |
[3] |
A. Q. Cai, K. Radtke and A. Linville, et al., Cellular retinoic acid-binding proteins are essential for hindbrain patterning and signal robustness in zebrafish, Development, 139 (2012), 2150-2155.
doi: 10.1242/dev.077065. |
[4] |
H. H. Chang, M. Hemberg and M. Barahona, et al., Transcriptome-wide noise controls lineage choice in mammalian progenitor cells, Nature, 453 (2008), 544-547.
doi: 10.1038/nature06965. |
[5] |
J. Chen, Q. Han and D. Pei, EMT and MET as paradigms for cell fate switching, J Mol Cell Biol, 4 (2012), 66-69.
doi: 10.1093/jmcb/mjr045. |
[6] |
M. Chen, L. Wang and C. C. Liu, et al., Noise attenuation in the ON and OFF states of biological switches, ACS Synth Biol, 2 (2013), 587-593.
doi: 10.1021/sb400044g. |
[7] |
S. Di Talia, J. M. Skotheim and J. M. Bean, et al., The effects of molecular noise and size control on variability in the budding yeast cell cycle, Nature, 448 (2007), 947-951.
doi: 10.1038/nature06072. |
[8] |
S. Gaudet, S. L. Spencer and W. W. Chen, et al., Exploring the contextual sensitivity of factors that determine cell-to-cell variability in receptor-mediated apoptosis, PLoS Comput Biol, 8 (2012), e1002482.
doi: 10.1371/journal.pcbi.1002482. |
[9] |
A. Grosse-Wilde, A. Fouquier d'Herouel and E. McIntosh, et al., Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival, PLoS One, 10 (2015), e0126522.
doi: 10.1371/journal.pone.0126522. |
[10] |
Y. Hart, Y. E. Antebi and A. E. Mayo, et al., Design principles of cell circuits with paradoxical components, Proc Natl Acad Sci U S A, 109 (2012), 8346-8351.
doi: 10.1073/pnas.1117475109. |
[11] |
K. Hayashi, S. de Sousa Lopes and F. Tang, et al., Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states, Cell Stem Cell, 3 (2008), 391-401.
doi: 10.1016/j.stem.2008.07.027. |
[12] |
T. Hong, K. Watanabe and C. Ta, et al., An ovol2-zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states, PLoS Comput Biol, 11 (2015), e1004569.
doi: 10.1371/journal.pcbi.1004569. |
[13] |
T. Hong, C. Oguz and J. J. Tyson, A mathematical framework for understanding four-dimensional heterogeneous differentiation of CD4+ T cells, Bulletin of Mathematical Biology, 77 (2015), 1046-1064.
doi: 10.1007/s11538-015-0076-6. |
[14] |
R. Y. Huang, M. K. Wong and T. Z. Tan, et al., An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530), Cell Death Dis, 4 (2013), e915.
doi: 10.1038/cddis.2013.442. |
[15] |
M. K. Jolly, D. Jia and M. Boareto, et al., Coupling the modules of EMT and stemness: A tunable 'stemness window' model, Oncotarget, 6 (2015), 25161-25174.
doi: 10.18632/oncotarget.4629. |
[16] |
R. Kalluri and R. A. Weinberg, The basics of epithelial-mesenchymal transition, The Journal of Clinical Investigation, 119 (2009), 1420-1428. |
[17] |
J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes, Springer-Verlag, 1987.
doi: 10.1007/978-1-4612-1054-2. |
[18] |
R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics, 29 (1966), 255-284.
doi: 10.1088/0034-4885/29/1/306. |
[19] |
D. A. Lawson, N. R. Bhakta and K. Kessenbrock, et al., Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells, Nature, 526 (2015), 131-135.
doi: 10.1038/nature15260. |
[20] |
J. Lei, S. A. Levin and Q. Nie, Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation, Proc Natl Acad Sci U S A, 111 (2014), E880-E887.
doi: 10.1073/pnas.1324267111. |
[21] |
W. A. Lim, C. M. Lee and C. Tang, Design principles of regulatory networks: Searching for the molecular algorithms of the cell, Mol Cell, 49 (2013), 202-212.
doi: 10.1016/j.molcel.2012.12.020. |
[22] |
X. Liu, S. Johnson and S. Liu, et al., Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy, Sci Rep, 2013. |
[23] |
W. C. Lo, C. S. Chou and K. K. Gokoffski, et al., Feedback regulation in multistage cell lineages, Math Biosci Eng, 6 (2009), 59-82.
doi: 10.3934/mbe.2009.6.59. |
[24] |
M. Lu, M. K. Jolly and H. Levine, et al., MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination, Proc Natl Acad Sci U S A, 110 (2013), 18144-18149.
doi: 10.1073/pnas.1318192110. |
[25] |
S. A. Mani, W. Guo and M. J. Liao, et al., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 133 (2008), 704-715.
doi: 10.1016/j.cell.2008.03.027. |
[26] |
K. V. Price, R. M. Storn and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer, Berlin, 2005. |
[27] |
Y. Shen, C. Shi and W. Wei, et al., The heterogeneity and dynamic equilibrium of rat embryonic stem cells, Cell Res, 21 (2011), 1143-1147.
doi: 10.1038/cr.2011.98. |
[28] |
M. S. Sosa, P. Bragado and J. A. Aguirre-Ghiso, Mechanisms of disseminated cancer cell dormancy: An awakening field, Nat Rev Cancer, 14 (2014), 611-622.
doi: 10.1038/nrc3793. |
[29] |
W. L. Tam and R. A. Weinberg, The epigenetics of epithelial-mesenchymal plasticity in cancer, Nature Medicine, 19 (2013), 1438-1449.
doi: 10.1038/nm.3336. |
[30] |
X. J. Tian, H. Zhang and J. Xing, Coupled reversible and irreversible bistable switches underlying TGF-$\beta$-induced epithelial to mesenchymal transition, Biophysical journal, 105 (2013), 1079-1089. |
[31] |
J. J. Tyson and B. Novak, Functional motifs in biochemical reaction networks, Annu Rev Phys Chem, 61 (2010), 219-240.
doi: 10.1146/annurev.physchem.012809.103457. |
[32] |
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, $3^{rd}$ edition, Elsevier, Amsterdam, 2007. |
[33] |
L. Wang, J. Xin and Q. Nie, A critical quantity for noise attenuation in feedback systems, PLoS Comput Biol, 6 (2010), e1000764, 17 pp.
doi: 10.1371/journal.pcbi.1000764. |
[34] |
W. Weston, J. Zayas and R. Perez, et al., Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets, Sci Rep, 4 (2014), 5199.
doi: 10.1038/srep05199. |
[35] |
X. Ye, W. L. Tam and T. Shibue, et al., Distinct EMT programs control normal mammary stem cells and tumour-initiating cells, Nature, 525 (2015), 256-260.
doi: 10.1038/nature14897. |
[36] |
J. Zhang, X. J. Tian and H. Zhang, et al., TGF-$\beta$-induced Epithelial-To-Mesenchymal Transition Proceeds Through Stepwise Activation of Multiple Feedback Loops, Science Signaling, 2014. |
[37] |
L. Zheng, M. Chen and Q. Nie, External noise control in inherently stochastic biological systems, J Math Phys, 53 (2012), 115616, 13 pp.
doi: 10.1063/1.4762825. |
[38] |
, Differential Evolution (DE) for Continuous Function Optimization (an algorithm by Kenneth Price and Rainer Storn),, Accessed in May 2016. Available from: , (2016).
|
[1] |
Tomas Alarcon, Philipp Getto, Anna Marciniak-Czochra, Maria dM Vivanco. A model for stem cell population dynamics with regulated maturation delay. Conference Publications, 2011, 2011 (Special) : 32-43. doi: 10.3934/proc.2011.2011.32 |
[2] |
Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1 |
[3] |
Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048 |
[4] |
Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks and Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67 |
[5] |
Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19 |
[6] |
Mostafa Adimy, Abdennasser Chekroun, Tarik-Mohamed Touaoula. Age-structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2765-2791. doi: 10.3934/dcdsb.2015.20.2765 |
[7] |
Yu A. Kutoyants. On approximation of BSDE and multi-step MLE-processes. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 4-. doi: 10.1186/s41546-016-0005-0 |
[8] |
Janet Dyson, Rosanna Villella-Bressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure and Applied Analysis, 2004, 3 (3) : 331-352. doi: 10.3934/cpaa.2004.3.331 |
[9] |
A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333 |
[10] |
Qiaojun Situ, Jinzhi Lei. A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1379-1397. doi: 10.3934/mbe.2017071 |
[11] |
Oleg U. Kirnasovsky, Yuri Kogan, Zvia Agur. Resilience in stem cell renewal: development of the Agur--Daniel--Ginosar model. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 129-148. doi: 10.3934/dcdsb.2008.10.129 |
[12] |
Caleb Mayer, Eric Stachura. Traveling wave solutions for a cancer stem cell invasion model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5067-5093. doi: 10.3934/dcdsb.2020333 |
[13] |
Qi Wang, Lifang Huang, Kunwen Wen, Jianshe Yu. The mean and noise of stochastic gene transcription with cell division. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1255-1270. doi: 10.3934/mbe.2018058 |
[14] |
Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363 |
[15] |
Ricardo Borges, Àngel Calsina, Sílvia Cuadrado. Equilibria of a cyclin structured cell population model. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 613-627. doi: 10.3934/dcdsb.2009.11.613 |
[16] |
A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250 |
[17] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[18] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[19] |
Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235 |
[20] |
Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson. An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1219-1235. doi: 10.3934/mbe.2015.12.1219 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]