# American Institute of Mathematical Sciences

• Previous Article
Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary
• DCDS-B Home
• This Issue
• Next Article
On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model
October  2016, 21(8): 2473-2489. doi: 10.3934/dcdsb.2016056

## Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays

 1 School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China 2 Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410083, China 3 Department of Mathematics, University of South Carolina, Columbia, SC 29208, United States

Received  November 2015 Revised  February 2016 Published  September 2016

Solid tumors are heterogeneous in composition. Cancer stem cells (CSCs) are a highly tumorigenic cell type found in developmentally diverse tumors that are believed to be resistant to standard chemotherapeutic drugs and responsible for tumor recurrence. Thus understanding the tumor growth kinetics is critical for development of novel strategies for cancer treatment. In this paper, the moment stability of nonlinear stochastic systems of breast cancer stem cells with time-delays has been investigated. First, based on the technique of the variation- of-constants formula, we obtain the second order moment equations for the nonlinear stochastic systems of breast cancer stem cells with time-delays. By the comparison principle along with the established moment equations, we can get the comparative systems of the nonlinear stochastic systems of breast cancer stem cells with time-delays. Then moment stability theorems have been established for the systems with the stability properties for the comparative systems. Based on the linear matrix inequality (LMI) technique, we next obtain a criteria for the exponential stability in mean square of the nonlinear stochastic systems for the dynamics of breast cancer stem cells with time-delays. Finally, some numerical examples are presented to illustrate the efficiency of the results.
Citation: Chengjun Guo, Chengxian Guo, Sameed Ahmed, Xinfeng Liu. Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2473-2489. doi: 10.3934/dcdsb.2016056
##### References:
 [1] S. Bao, Q. Wu, R. E. McLendon, Y. Hao, Q. Shi, A. B. Hjelmeland, M. W. Dewhirst, D. D. Bigner and J. N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, 444 (2006), 756-760. [2] I. Ben-Porath, M. W. Thomson, V. J. Carey, R. Ge, G. W. Bell, A. Regev and R. A. Weinberg, An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors, Nature genetics, 40 (2008), 499-507. [3] L. O. Chua and L. Yang, Cellular neural netork: Theory and applications, IEEE Trans Circ Syst, 35 (1988), 1257-1272. doi: 10.1109/31.7600. [4] A. Cicalese, G. Bonizzi, C. E. Pasi, M. Faretta, S. Ronzoni, B. Giulini, C. Brisken, S. Minucci, P. P. Di Fiore and P. G. Pelicci, The Tumor Suppressor p53 Regulates Polarity of Self-Renewing Divisions in Mammary Stem Cells, Cell, 138 (2009), 1083-1095. [5] P. Dalerba, R. W. Cho and M. F. Clarke, Cancer stem cells: Models and concepts, Annu. Rev. Med., 58 (2007), 267-284. [6] C. J. Guo, D. O'Regan, F. Q. Deng and R. Agarwal, Fixed points and exponential stability for a stochastic neutral cellular neural network, Applied Mathematics Letters, 26 (2013), 849-853. doi: 10.1016/j.aml.2013.03.011. [7] C. J. Guo, D. O'Regan, F. Q. Deng and R. Agarwal, Fixed points and exponential stability for uncertain stochastic neural networks with multiple mixed time-delays,, Applicable Analysis, (). [8] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977. [9] R. P. Hill and R. Perris, "Destemming" Cancer Stem Cells, Journal of the National Cancer Institute, 99 (2007), 1435-1440. [10] J. Hu, S. M. Zhong and L. Liang, Exponential stability analysis of stochastic delays cellular neural network, Chaos, Solitons and Fractals, 27 (2006), 1006-1010. doi: 10.1016/j.chaos.2005.04.067. [11] H. Huang and J. D. Cao, Exponential stability analysis of uncertain stochastic neural networks with multiple delays, Nonlinear Anal: Real World Appl, 8 (2007), 646-653. doi: 10.1016/j.nonrwa.2006.02.003. [12] G. Joya, M. A. Atencia and F. Sandoval, Hopfield neural networks for optimization: Study of the different dynamics, Neurocomputing, 43 (2002), 219-237. doi: 10.1016/S0925-2312(01)00337-X. [13] W. J. Li and T. Lee, Hopfield neural networks for affine invariant matching, IEEE Trans Neural Networks, 12 (2001), 1400-1410. [14] X. F. Liu, S. Johnson, S. Liu, D. Kanojia, W. Yue, U. Singn, Q. Wang, Q. Wang, Q, Nie and H. X. Chen, Nonlinear growth kinetics of breast cancer stem cells: Implications for cancer stem cell targeted therapy, Scientific reports, 3 (2013)(OI: 10.1038/srep02473). [15] N. A. Lobo, Y. Shimono, D. Qian and M. F. Clarke, The biology of cancer stem cells, Annu. Rev. Cell Dev. Biol., 23 (2007), 675-699. [16] J. W. Luo, Fixed points and exponential stability for stochastic Volterra-Levin equations, J.Comput.Appl.Math., 234 (2010), 934-940. doi: 10.1016/j.cam.2010.02.013. [17] S. Pece, D. Tosoni, S. Confalonieri, G. Mazzarol, M. Vecchi, S. Ronzoni, L. Bernard, G. Viale, P. G. Pelicci and P. P. Di Fiore, Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content, Cell, 140 (2010), 62-73. [18] T. Reya, S. J. Morrison, M. F. Clarke and I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, 414 (2001), 105-111. [19] M. Shipitsin, L. L. Campbell, P. Argani, S. Weremowicz, N. Bloushtain-Qimron, J. Yao, T. Nikolskaya, T. Serebryiskaya, R. Beroukhim, M. Hu and others, Molecular definition of breast tumor heterogeneity, Cancer cell, 11 (2007), 259-273. [20] B. T. Tan, C. Y. Park, L. E. Ailles and I. L. Weissman, The cancer stem cell hypothesis: A work in progress, Laboratory Investigation, 86 (2006), 1203-1207. [21] J. E. Visvader and G. J. Lindeman, Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions, Nature Reviews Cancer, 8 (2008), 755-768. [22] Z. D. Wang, S. Laura, J. A. Fang and X. H. Liu, Exponential stability analysis of uncertain stochastic neural networks with mixed time-delays, Chaos, Solitons and Fractals, 32 (2007), 62-72. doi: 10.1016/j.chaos.2005.10.061. [23] Z. D. Wang, Y. R. Liu and X. H. Liu, On global asymptotic stability analysis of neural networks with discrete and distributed delays, Phys Lett A, 345 (2005), 299-308. [24] S. Young, P. Scott and N. Nasrabadi, Object recognition using multilayer Hopfield neural networks, IEEE Trans Image Process, 6 (1997), 357-372. doi: 10.1109/83.557336. [25] J. H. Zhang, P. Shi and J. Q. Qiu, Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays, Nonlinear Anal: Real World Appl, 8 (2007), 1349-1357. doi: 10.1016/j.nonrwa.2006.06.010.

show all references

##### References:
 [1] S. Bao, Q. Wu, R. E. McLendon, Y. Hao, Q. Shi, A. B. Hjelmeland, M. W. Dewhirst, D. D. Bigner and J. N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, 444 (2006), 756-760. [2] I. Ben-Porath, M. W. Thomson, V. J. Carey, R. Ge, G. W. Bell, A. Regev and R. A. Weinberg, An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors, Nature genetics, 40 (2008), 499-507. [3] L. O. Chua and L. Yang, Cellular neural netork: Theory and applications, IEEE Trans Circ Syst, 35 (1988), 1257-1272. doi: 10.1109/31.7600. [4] A. Cicalese, G. Bonizzi, C. E. Pasi, M. Faretta, S. Ronzoni, B. Giulini, C. Brisken, S. Minucci, P. P. Di Fiore and P. G. Pelicci, The Tumor Suppressor p53 Regulates Polarity of Self-Renewing Divisions in Mammary Stem Cells, Cell, 138 (2009), 1083-1095. [5] P. Dalerba, R. W. Cho and M. F. Clarke, Cancer stem cells: Models and concepts, Annu. Rev. Med., 58 (2007), 267-284. [6] C. J. Guo, D. O'Regan, F. Q. Deng and R. Agarwal, Fixed points and exponential stability for a stochastic neutral cellular neural network, Applied Mathematics Letters, 26 (2013), 849-853. doi: 10.1016/j.aml.2013.03.011. [7] C. J. Guo, D. O'Regan, F. Q. Deng and R. Agarwal, Fixed points and exponential stability for uncertain stochastic neural networks with multiple mixed time-delays,, Applicable Analysis, (). [8] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977. [9] R. P. Hill and R. Perris, "Destemming" Cancer Stem Cells, Journal of the National Cancer Institute, 99 (2007), 1435-1440. [10] J. Hu, S. M. Zhong and L. Liang, Exponential stability analysis of stochastic delays cellular neural network, Chaos, Solitons and Fractals, 27 (2006), 1006-1010. doi: 10.1016/j.chaos.2005.04.067. [11] H. Huang and J. D. Cao, Exponential stability analysis of uncertain stochastic neural networks with multiple delays, Nonlinear Anal: Real World Appl, 8 (2007), 646-653. doi: 10.1016/j.nonrwa.2006.02.003. [12] G. Joya, M. A. Atencia and F. Sandoval, Hopfield neural networks for optimization: Study of the different dynamics, Neurocomputing, 43 (2002), 219-237. doi: 10.1016/S0925-2312(01)00337-X. [13] W. J. Li and T. Lee, Hopfield neural networks for affine invariant matching, IEEE Trans Neural Networks, 12 (2001), 1400-1410. [14] X. F. Liu, S. Johnson, S. Liu, D. Kanojia, W. Yue, U. Singn, Q. Wang, Q. Wang, Q, Nie and H. X. Chen, Nonlinear growth kinetics of breast cancer stem cells: Implications for cancer stem cell targeted therapy, Scientific reports, 3 (2013)(OI: 10.1038/srep02473). [15] N. A. Lobo, Y. Shimono, D. Qian and M. F. Clarke, The biology of cancer stem cells, Annu. Rev. Cell Dev. Biol., 23 (2007), 675-699. [16] J. W. Luo, Fixed points and exponential stability for stochastic Volterra-Levin equations, J.Comput.Appl.Math., 234 (2010), 934-940. doi: 10.1016/j.cam.2010.02.013. [17] S. Pece, D. Tosoni, S. Confalonieri, G. Mazzarol, M. Vecchi, S. Ronzoni, L. Bernard, G. Viale, P. G. Pelicci and P. P. Di Fiore, Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content, Cell, 140 (2010), 62-73. [18] T. Reya, S. J. Morrison, M. F. Clarke and I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, 414 (2001), 105-111. [19] M. Shipitsin, L. L. Campbell, P. Argani, S. Weremowicz, N. Bloushtain-Qimron, J. Yao, T. Nikolskaya, T. Serebryiskaya, R. Beroukhim, M. Hu and others, Molecular definition of breast tumor heterogeneity, Cancer cell, 11 (2007), 259-273. [20] B. T. Tan, C. Y. Park, L. E. Ailles and I. L. Weissman, The cancer stem cell hypothesis: A work in progress, Laboratory Investigation, 86 (2006), 1203-1207. [21] J. E. Visvader and G. J. Lindeman, Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions, Nature Reviews Cancer, 8 (2008), 755-768. [22] Z. D. Wang, S. Laura, J. A. Fang and X. H. Liu, Exponential stability analysis of uncertain stochastic neural networks with mixed time-delays, Chaos, Solitons and Fractals, 32 (2007), 62-72. doi: 10.1016/j.chaos.2005.10.061. [23] Z. D. Wang, Y. R. Liu and X. H. Liu, On global asymptotic stability analysis of neural networks with discrete and distributed delays, Phys Lett A, 345 (2005), 299-308. [24] S. Young, P. Scott and N. Nasrabadi, Object recognition using multilayer Hopfield neural networks, IEEE Trans Image Process, 6 (1997), 357-372. doi: 10.1109/83.557336. [25] J. H. Zhang, P. Shi and J. Q. Qiu, Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays, Nonlinear Anal: Real World Appl, 8 (2007), 1349-1357. doi: 10.1016/j.nonrwa.2006.06.010.
 [1] Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521 [2] Wei Wang, Kai Liu, Xiulian Wang. Sensitivity to small delays of mean square stability for stochastic neutral evolution equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2403-2418. doi: 10.3934/cpaa.2020105 [3] Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487 [4] Pham Huu Anh Ngoc. New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021040 [5] Manuel Delgado, Ítalo Bruno Mendes Duarte, Antonio Suárez Fernández. Nonlocal elliptic system arising from the growth of cancer stem cells. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1767-1795. doi: 10.3934/dcdsb.2018083 [6] J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263 [7] Alexey G. Mazko. Positivity, robust stability and comparison of dynamic systems. Conference Publications, 2011, 2011 (Special) : 1042-1051. doi: 10.3934/proc.2011.2011.1042 [8] Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188 [9] Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163-173. doi: 10.3934/proc.2011.2011.163 [10] Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471 [11] Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028 [12] Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997 [13] Arzu Ahmadova, Nazim I. Mahmudov, Juan J. Nieto. Exponential stability and stabilization of fractional stochastic degenerate evolution equations in a Hilbert space: Subordination principle. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022008 [14] Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011 [15] Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739 [16] Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021083 [17] Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 [18] Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103 [19] Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078 [20] Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155

2020 Impact Factor: 1.327