# American Institute of Mathematical Sciences

• Previous Article
The global attractor of the 2d Boussinesq equations with fractional Laplacian in subcritical case
• DCDS-B Home
• This Issue
• Next Article
Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary
October  2016, 21(8): 2509-2530. doi: 10.3934/dcdsb.2016058

## Random walk's models for fractional diffusion equation

 1 Laboratoire d'Ingénierie Mathématique, Université de Carthage, Ecole Polytechnique de Tunisie, BP 743, 2078 La Marsa, Tunisia 2 Laboratoire d'Ingénierie Mathématique, Université de Carthage, Ecole Polytechnique de Tunisie-Institut National des Sciences Appliquées et de Technologie, Centre Urbain Nord, BP 676 Cedex 1080 Charguia Tunis, Tunisia

Received  April 2015 Revised  May 2016 Published  September 2016

Fractional diffusion equations are used for mass spreading in inhomogeneous media. They are applied to model anomalous diffusion, where a cloud of particles spreads in a different manner than the classical diffusion equation predicts. Thus, they involve fractional derivatives. Here we present a continuous variant of Grünwald-Letnikov's formula, which is useful to compute the flux of particles performing random walks, allowing for heavy-tailed jump distributions. In fact, we set a definition of fractional derivatives yielding the operators which enable us to retrieve the space fractional variant of Fick's law, for enhanced diffusion in disordered media, without passing through any partial differential equation for the space and time evolution of the concentration.
Citation: Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058
##### References:
 [1] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II. Second edition John Wiley and sons,Inc., New York-London-Sydney, 1971. [2] R. Gorenflo and F. Mainardi, Random Walk models for space-fractional diffusion processes, Fractional Calculus and Applied Analysis, 1 (1998), 167-191. [3] N. Heymans, Fractional calculus description of non-linear viscoelastic behaviour of polymers, in Non-linear Dynamics, 38 (2004), 221-231. doi: 10.1007/s11071-004-3757-5. [4] N. Krepysheva, Transport anormal de traceurs passifs en milieux poreux hétérogènes: équations fractionnaires, simulation numérique et conditions aux limites, Ph.D thesis, Université D'Avignon et des Pays de Vaucluse, 2005. [5] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies 204, Ed. Jan van Mill, Amsterdam, 2006. [6] F. Mainardi, Fractional calculus: Some basic problems in countinum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien and New York, 378 (1997), 291-348, arXiv:1201.0863. doi: 10.1007/978-3-7091-2664-6_7. [7] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, in J. Phys. A, 37 (2004), 161-208. doi: 10.1088/0305-4470/37/31/R01. [8] M. C. Néel, A. Abdennadher and M. joelson, Fractional Fick's law: The direct way, in Journal of Physics A: Mathematical and Theoretical, 40 (2007), 8299-8314. [9] B. Rubin, Fractional Integrals and Potentials, Longman Green, Harlow, 1996. [10] S. G. Samko, Hypersingular integrals and differences of fractional order, in Trudy Mat. Inst. Steklov, 192 (1990), 164-182. [11] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gorden and Breach, New York, 1993.

show all references

##### References:
 [1] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II. Second edition John Wiley and sons,Inc., New York-London-Sydney, 1971. [2] R. Gorenflo and F. Mainardi, Random Walk models for space-fractional diffusion processes, Fractional Calculus and Applied Analysis, 1 (1998), 167-191. [3] N. Heymans, Fractional calculus description of non-linear viscoelastic behaviour of polymers, in Non-linear Dynamics, 38 (2004), 221-231. doi: 10.1007/s11071-004-3757-5. [4] N. Krepysheva, Transport anormal de traceurs passifs en milieux poreux hétérogènes: équations fractionnaires, simulation numérique et conditions aux limites, Ph.D thesis, Université D'Avignon et des Pays de Vaucluse, 2005. [5] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies 204, Ed. Jan van Mill, Amsterdam, 2006. [6] F. Mainardi, Fractional calculus: Some basic problems in countinum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien and New York, 378 (1997), 291-348, arXiv:1201.0863. doi: 10.1007/978-3-7091-2664-6_7. [7] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, in J. Phys. A, 37 (2004), 161-208. doi: 10.1088/0305-4470/37/31/R01. [8] M. C. Néel, A. Abdennadher and M. joelson, Fractional Fick's law: The direct way, in Journal of Physics A: Mathematical and Theoretical, 40 (2007), 8299-8314. [9] B. Rubin, Fractional Integrals and Potentials, Longman Green, Harlow, 1996. [10] S. G. Samko, Hypersingular integrals and differences of fractional order, in Trudy Mat. Inst. Steklov, 192 (1990), 164-182. [11] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gorden and Breach, New York, 1993.
 [1] Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic and Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291 [2] Michael Taylor. Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1261-1287. doi: 10.3934/dcdsb.2012.17.1261 [3] Yousef Alnafisah, Hamdy M. Ahmed. Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion. Evolution Equations and Control Theory, 2022, 11 (3) : 925-937. doi: 10.3934/eect.2021031 [4] Min He. A class of integrodifferential equations and applications. Conference Publications, 2005, 2005 (Special) : 386-396. doi: 10.3934/proc.2005.2005.386 [5] Maxim Sølund Kirsebom. Extreme value theory for random walks on homogeneous spaces. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4689-4717. doi: 10.3934/dcds.2014.34.4689 [6] Colin Little. Deterministically driven random walks in a random environment on $\mathbb{Z}$. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5555-5578. doi: 10.3934/dcds.2016044 [7] Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445 [8] Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239 [9] Christina Knox, Amir Moradifam. Electrical networks with prescribed current and applications to random walks on graphs. Inverse Problems and Imaging, 2019, 13 (2) : 353-375. doi: 10.3934/ipi.2019018 [10] Martin Frank, Weiran Sun. Fractional diffusion limits of non-classical transport equations. Kinetic and Related Models, 2018, 11 (6) : 1503-1526. doi: 10.3934/krm.2018059 [11] Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039 [12] Stephan Didas, Joachim Weickert. Integrodifferential equations for continuous multiscale wavelet shrinkage. Inverse Problems and Imaging, 2007, 1 (1) : 47-62. doi: 10.3934/ipi.2007.1.47 [13] Paola Loreti, Daniela Sforza. Inverse observability inequalities for integrodifferential equations in square domains. Evolution Equations and Control Theory, 2018, 7 (1) : 61-77. doi: 10.3934/eect.2018004 [14] Joshua A. McGinnis, J. Douglas Wright. Using random walks to establish wavelike behavior in a linear FPUT system with random coefficients. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021100 [15] Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083 [16] Renhai Wang, Yangrong Li, Bixiang Wang. Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4091-4126. doi: 10.3934/dcds.2019165 [17] Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 695-708. doi: 10.3934/dcdss.2020038 [18] Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $C^{1}$ domains. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 [19] Jan Lorenz, Stefano Battiston. Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3 (2) : 185-200. doi: 10.3934/nhm.2008.3.185 [20] Kumiko Hattori, Noriaki Ogo, Takafumi Otsuka. A family of self-avoiding random walks interpolating the loop-erased random walk and a self-avoiding walk on the Sierpiński gasket. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 289-311. doi: 10.3934/dcdss.2017014

2020 Impact Factor: 1.327