\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface

Abstract Related Papers Cited by
  • In this paper, we study the Rayleigh-Taylor instability phenomena for two compressible, immiscible, inviscid, ideal polytropic fluids. Such two kind of fluids always evolve together with a free interface due to the uniform gravitation. We construct the steady-state solutions for the denser fluid lying above the light one. With an assumption on the steady-state temperature function, we find some growing solutions to the related linearized problem, which in turn demonstrates the linearized problem is ill-posed in the sense of Hadamard. By such an ill-posedness result, we can finally prove the solutions to the original nonlinear problem does not have the property EE(k). Precisely, the $H^3$ solutions to the original nonlinear problem can not Lipschitz continuously depend on their initial data.
    Mathematics Subject Classification: 35L04, 35L65, 76E17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Duan, F. Jiang and S. Jiang, On the Rayleigh-Taylor instability for incompressible, inviscid magnetohydrodynamic flows, SIAM J. Appl. Math., 71 (2011), 1990-2013.doi: 10.1137/110830113.

    [2]

    Y. Guo and I. Tice, Linear Rayleigh-Taylor instability for viscous, compressible fluids, SIAM J. Math. Anal., 42 (2010), 1688-1720.

    [3]

    Y. Guo and I. Tice, Compressible, inviscid Rayleigh-Taylor instability, Indiana Univ. Math. J, 60 (2011), 677-711.doi: 10.1512/iumj.2011.60.4193.

    [4]

    H. Hwang and Y. Guo, On the dynamical Rayleigh-Taylor instability, Arch. Ration. Mech. Anal., 167 (2003), 235-253.doi: 10.1007/s00205-003-0243-z.

    [5]

    F. Jiang and S. Jiang, On linear instability and stability of the Rayleigh-Taylor problem in magnetohydrodynamics, J. Math. Fluid Mech., 17 (2015), 639-668.doi: 10.1007/s00021-015-0221-x.

    [6]

    F. Jiang, S. Jiang and G. Ni, Nonlinear instability for nonhomogeneous incompressible viscous fluids, Sci. China Math., 56 (2013), 665-686.doi: 10.1007/s11425-013-4587-z.

    [7]

    J. Jang, I. Tice and Y. Wang, The compressible viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Arch. Ration. Mech. Anal., 221 (2016), 215-272, arXiv:1501.07583.doi: 10.1007/s00205-015-0960-0.

    [8]

    H. Kull, Theory of the Rayleigh-Taylor instability, Phys. Rep., 206 (1991), 197-325.doi: 10.1016/0370-1573(91)90153-D.

    [9]

    L. Rayleigh, Analytic solutions of the Rayleigh equations for linear density profiles, Proc. London Math. Soc., 14 (1883), 170-177.

    [10]

    L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, in Scientific Paper, Cambridge University Press, Cambridge, UK, II (1990), 200-207.

    [11]

    G. I. Taylor, The instability of liquid surface when accelerated in a direction perpendicular to their planes, Proc. Roy Soc. London Ser. A, 201 (1950), 192-196.doi: 10.1098/rspa.1950.0052.

    [12]

    Y. J. Wang and I. Tice, The viscous surface-internal wave problem: Nonlinear Rayleigh-Taylor instability, Comm. Partial Differential Equations, 37 (2012), 1967-2028.doi: 10.1080/03605302.2012.699498.

    [13]

    Y. J. Wang, Critical magnetic number in the magnetohydrodynamic Rayleigh-Taylor instability, J. Math. Phys., 53 (2012), 073701, 22 pp.doi: 10.1063/1.4731479.

    [14]

    J. Wehausen and E. Laitone, Surface waves, Handbuch der Physik, Springer-Verlag, Berlin, 9 (1960), 446-778.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(256) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return